

Intelligent Document Retrieval

ON INFORMATION RETRIEVAL

Series Editor:
W. Bruce Croft

University of Massachusetts, Amherst

Also in the Series:

INFORMATION RETRIEVAL SYSTEMS: Theory and Implementation, by Gerald
Kowalski; ISBN: 0-7923-9926-9

CROSS-LANGUAGE INFORMATION RETRIEVAL, edited by Gregory Grefenstette;
ISBN: 0-7923-8122-X

TEXT RETRIEVALAND FILTERING: Analytic Models of Performance, by Robert M. Losee;
ISBN: 0-7923-8177-7

INFORMATION RETRIEVAL: UNCERTAINTY AND LOGICS: Advanced Models for the
Representation and Retrieval of Information, by Fabio Crestani, Mounia Lalmas, and
Cornelis Joost van Rijsbergen; ISBN: 0-7923-8302-8

DOCUMENT COMPUTING: Technologies for Managing Electronic Document Collections,
by Ross Wilkinson, Timothy Arnold-Moore, Michael Fuller, Ron Sacks-Davis, James
Thom, and Justin Zobel; ISBN: 0-7923-8357-5

AUTOMATIC INDEXING AND ABSTRACTING OF DOCUMENT TEXTS, by Marie-
Francine Moens; ISBN 0-7923-7793-1

ADVANCES IN INFORMATIONAL RETRIEVAL: Recent Research from the Center for
Intelligent Information Retrieval, by W. Bruce Croft; ISBN 0-7923-7812-1

INFORMATION RETRIEVAL SYSTEMS: Theory and Implementation, Second Edition,
by Gerald J. Kowalski and Mark T. Maybury; ISBN: 0-7923-7924-1

PERSPECTIVES ON CONTENT-BASED MULTIMEDIA SYSTEMS, by Jian Kang Wu;
Mohan S. Kankanhalli;Joo-Hwee Lim;Dezhong Hong; ISBN: 0-7923-7944-6

MINING THE WORLD WIDE WEB: An Information Search Approach, by George Chang,
Marcus J. Healey, James A. M. McHugh, Jason T. L. Wang; ISBN: 0-7923-7349-9

INTEGRATED REGION-BASED IMAGE RETRIEVAL, by James Z. Wang;
ISBN: 0-7923-7350-2

TOPIC DETECTION AND TRACKING: Event-based Information Organization,
edited by James Allan; ISBN: 0-7923-7664-1

John Lafferty; ISBN: 1-4020-12160-0

THE SPRINGER INTERNATIONAL SERIES

MACHINE LEARNING AND STATISTICAL MODELING APPROACHES TO IMAGE
RETRIEVAL,

ISBN: 1-4020-3004-5

ISBN: 1-4020-3003-7

CHARTING A NEW COURSE: NATURAL LANGUAGE PROCESSING AND INFORMATION
RETRIEVAL: Essays in Honour of Karen Sparck Jones, edited by John I. Tait;
ISBN: 1-4020-3343-5

LANGUAGE MODELING FOR INFORMATION RETRIEVAL, edited by W. Bruce Croft,

by Yixin Chen, Jia Li, James Z. Wang; ISBN: 1-4020-8034-4

INFORMATION RETRIEVAL: Algorithms and Heuristics, by David A. Grossman, Ophir Frieder;

INFORMATION RETRIEVAL: Algorithms and Heuristics, by David A. Grossman, Ophir Frieder;

Intelligent Document Retrieval
Exploiting Markup Structure

by

Udo Kruschwitz
University of Essex,

Colchester, U.K.

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-3767-8 (HB)
ISBN-13 978-1-4020-3767-2 (HB)
ISBN-10 1-4020-3768-6 (e-book)
ISBN-13 978-1-4020-3768-9 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved
© 2005 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

Contents

Foreword . IX

Preface . XI

List of Figures .XIII

List of Tables . XV

1 Introduction . 1
1.1 Introductory Examples . 4
1.2 Using Markup to Extract Knowledge . 8
1.3 Applying the Extracted Knowledge . 15
1.4 Structure of the Book . 17

Part I The Model

2 Related Work . 23
2.1 Information Retrieval . 24
2.2 Information Extraction . 26
2.3 Clustering . 27
2.4 Classification . 29
2.5 Web Search Techniques . 31
2.6 Ontologies . 34
2.7 Layout Analysis . 36
2.8 Web Search Studies . 36
2.9 Navigating Concept Hierarchies . 38
2.10 Dialogue Systems . 41
2.11 Usability Issues . 42
2.12 Concluding Remarks on Related Work . 43

VI Contents

3 Data Analysis and Domain Model Construction 45
3.1 Documents . 45
3.2 Concepts . 47
3.3 A Domain Model Based on Concepts . 51
3.4 Model Structure . 53
3.5 Model Construction . 54
3.6 Using the Model for Query Modification . 58
3.7 Implementational Issues . 60

4 Incorporating Additional Knowledge . 63
4.1 Internal Knowledge . 63
4.2 External Knowledge . 67

5 A Dialogue System for Partially Structured Data 69
5.1 Dialogue as Movement in Space . 70
5.2 Dialogue Example . 71
5.3 Static vs. Dynamic Clusters . 73
5.4 Real User Queries . 73
5.5 Properties . 75

5.5.1 Document Properties . 76
5.5.2 System Properties . 76
5.5.3 Goal Description . 77

5.6 Dialogue . 78
5.6.1 High Level Dialogue States . 78
5.6.2 Low Level Dialogue States . 80
5.6.3 Constructing Potential Choices . 85
5.6.4 Dialogue Strategies . 89
5.6.5 Customization . 89

Part II Practical Applications

6 UKSearch - Intelligent Web Search . 93
6.1 Indexing Web Pages . 94
6.2 The UKSearch System . 98

6.2.1 Indexing and Model Construction 100
6.2.2 Dialogue Strategy . 102

6.3 Sample Domain 1: Essex University . 107
6.3.1 Index Tables . 108
6.3.2 Domain Model . 109
6.3.3 Concepts vs. Real User Queries . 111

6.4 Sample Domain 2: BBC News . 112
6.4.1 Index Tables . 115
6.4.2 Domain Model . 116
6.4.3 Adjusted Dialogue Strategy . 117

Contents VII

6.5 Implementational Issues . 117

7 UKSearch - Evaluation and Discussion . 121
7.1 Log Analysis . 121

7.1.1 System Setup . 122
7.1.2 Results . 124
7.1.3 Discussion . 125

7.2 Investigating Domain Model Relations . 125
7.2.1 Task and Setup . 125
7.2.2 Results . 127
7.2.3 Discussion . 128

7.3 Task-Based Evaluation: Essex University 129
7.3.1 Search Tasks . 129
7.3.2 Experimental Setup . 133
7.3.3 Procedure . 134
7.3.4 Results . 134
7.3.5 Discussion . 140

7.4 Task-Based Evaluation: BBC News . 141
7.4.1 Search Tasks . 142
7.4.2 Experimental Setup and Procedure 143
7.4.3 Results . 143
7.4.4 Discussion . 151

8 YPA - Searching Classified Directories . 157
8.1 System Overview . 158
8.2 Indexing Classified Advertisements . 159

8.2.1 Structure of the Backend . 160
8.2.2 Domain Model Construction . 161

8.3 Dialogue Strategy in the YPA . 162
8.3.1 Properties . 165
8.3.2 Dialogue Setup . 166
8.3.3 Dialogue Function . 168
8.3.4 Calculation of Potential Choices . 168

8.4 Implementational Issues . 171

9 Future Directions and Conclusions . 173
9.1 Towards Evolving Domain Models . 173
9.2 Dialogue Management . 176
9.3 An Outlook on Future Evaluations . 177
9.4 Conclusions . 178

References . 181

Index . 193

Foreword

Udo Kruschwitz’s book, based on his PhD thesis, argues that for Google-type
web searches on limited domains, or on site-specific intranets, performance can
be enhanced by making use of a domain model of the entities and relations
characteristic of that site. He shows how to use document structure mark-
up and lexical co-occurrences within and across documents to construct such
domain models automatically. Users are then able to engage in a dialogue in
which cues are provided, based on the domain model, to enable them to relax
or to refine their search until they find what they are looking for.

The method has been implemented and embodied in two different practical
applications, and these have been evaluated in user trials. These trials provide
some evidence that the technique is effective in helping users.

The research carried out by Udo Kruschwitz and reported in this book is a
model of how to combine computational linguistics and information retrieval
techniques in a theoretically motivated - but practical - application, which
has also been fielded and empirically tested. Anyone working in the fields
of computational linguistics, information retrieval, document summarisation,
web searching or question answering will find something of value in this book.

Oxford, Stephen Pulman
23rd March 2005 Professor of General Linguistics

Oxford University

Preface

Thanks to everyone who helped me with this book.
I wish to thank Sam Steel, Anne De Roeck, Massimo Poesio, Mounia

Lalmas, Thomas Rolleke, Nick Webb, Paul Scott, Ray Turner, Maria Fasli,¨
Stephen Pulman and Bill Black in particular as well as all the students and
colleagues who volunteered to help with the evaluations. Some of the evalua-
tion work described in here was joint work with Hala Al-Bakour supported by
EPSRC grant GR/R92813/01, who I would like to thank as well. Thanks to
Doug Arnold for suggesting a book title. Furthermore, I am very grateful to
Robbert van Berckelaer at Springer for his assistance in preparing this book.

Finally, special thanks to my family over there in Germany, the German
Society and the Horse & Groom.

Wivenhoe, Udo Kruschwitz
4th April 2005

List of Figures

1.1 Sample relations in a domain model . 2
1.2 Extraction and application of markup-based knowledge 3
1.3 Applying a domain model in ad hoc search 5
1.4 Combining search engine results with the domain model 6
1.5 Simple relaxation options proposed by the search system 7
1.6 Concept tree for the compound language linguistics 13
1.7 Concept tree for the term language . 14
1.8 Two search strategies . 18

3.1 Example Web page . 46
3.2 Example concepts in a Web page . 49
3.3 Concept tree for the compound language linguistics 52
3.4 Revised concept tree for the compound language linguistics 56

4.1 Concept tree for classification term cameras 66
4.2 WordNet: some knowledge encoded for camera 68

5.1 Clustering the potential results . 72
5.2 Query refinement options for the example query “yahoo” 75
5.3 Query refinement options for the example query “prospectus” . . 75
5.4 High level abstraction of the dialogue . 81
5.5 Sample term hierarchy . 87

6.1 Most frequent keywords . 96
6.2 Selected concepts . 97
6.3 Sketch of information flow in UKSearch . 99
6.4 UKSearch: query relaxation . 106
6.5 UKSearch: user interface . 108
6.6 UKSearch: system’s response following a user query 109
6.7 UKSearch: system’s response to the user query “union” 113

XIV List of Figures

6.8 UKSearch: system’s response to the user query “ukraine” 114
6.9 UKSearch: query refinement using more than one concept 115
6.10 Sketch of information flow in UKSearch (BBC News setup) 118
6.11 UKSearch: system’s response to the user query “language”

(Brighton) . 120

7.1 System A: a user has typed in “phd” . 130
7.2 System B: a user has typed in “phd” . 131

8.1 Architecture of the Ypa . 158
8.2 Extraction of the Ypa-Backend . 160
8.3 Ypa: response to user query “I need an electrical specialist ...” . 163
8.4 Ypa: response to user query “kitchen cupboard specialist” 164
8.5 Ypa: response to user query “I want to buy a Minox” 167

9.1 Original concept tree for example query “union” 176
9.2 Concept tree for example query “union” after trial period 176

List of Tables

3.1 Index terms: part-of-speech patterns . 60

6.1 Some statistics describing the University of Essex domain 110
6.2 Page statistics of the University of Essex domain 110
6.3 Concept examples in the University of Essex domain 110
6.4 Domain model statistics for the University of Essex domain 111
6.5 Domain model statistics for the University of Essex domain

(root nodes are type-3 concepts) . 111
6.6 Some statistics describing the BBC News domain 116
6.7 Page statistics of the BBC News domain . 116
6.8 Domain model statistics for the BBC News domain 116
6.9 Domain model statistics for the BBC News domain (root

nodes are type-3 concepts) . 117

7.1 Test data . 124
7.2 Number of documents returned by Google 124
7.3 Searcher-by-question matrix . 133
7.4 Subject experience with computers and search systems 135
7.5 Average completion time (in seconds) . 135
7.6 Average number of turns to complete a task 136
7.7 Post-search questionnaire (user satisfaction for each task) 137
7.8 Post-search questionnaire . 138
7.9 Post-system questionnaire . 138
7.10 Exit questionnaire (system preference) . 139
7.11 Exit questionnaire (search experience) . 139
7.12 Subject experience with computers and search systems 144
7.13 Average completion time (in seconds) . 145
7.14 Average number of turns to complete a task 145
7.15 Average number of turns to complete a task on System A 146
7.16 Average number of turns to complete a task on System B 146

XVI List of Tables

7.17 Post-search questionnaire (user satisfaction for each task) 147
7.18 Post-search questionnaire (something learned) 148
7.19 Post-search questionnaire . 148
7.20 Post-search questions (task-by-task) . 149
7.21 Post-system questionnaire . 150
7.22 Exit questionnaire (system preference) . 150
7.23 Exit questionnaire (search experience) . 151

1

Introduction

“The issue of extracting the structure of some text [...] is a challenging
issue” [1].

We are witnessing a massive growth of electronic natural language re-
sources. Most noticeable is the development of the Web, with online newspa-
pers, product catalogues, data archives etc. Millions of users access the Web
or other electronic document collections every day. In this book we look at a
single aspect of this rather complex area: How can we help a user to navigate
a document collection easily, and how can we assist a user who wants to search
a collection for documents that satisfy some information need?

We will not look at general Web search, but instead we will concentrate on
smaller collections such as Web sites or collections of classified advertisements.
They represent much narrower domains unlike the broad coverage of the Web.
One reason for considering this area a worthwhile research issue is the fact that
searches in document collections often return either large numbers of matches
or no suitable matches at all. We acknowledge that Web search algorithms
have matured significantly over the past few years and that a search request
submitted to Google1 typically returns excellent matches for a user query.
Nevertheless, this is not always the case if the collection is only a fraction the
size of the Web and the documents cover a much smaller range of topics. Such
collections are very common in institutions, universities or companies.

Some explicit knowledge about the domain, i.e. a domain model, could be
useful to help the user find the right documents. A domain model could encode
relations between words or phrases that have been extracted by analysing the
document collection. The graph in Fig. 1.1 gives an idea of how such a model
may be structured. We see a tree of related terms that can be used to either
assist a user in the search process, perform automatic query refinements or
allow the user to browse the collection. Note that the types of relation in
the sample tree are not formally specified. This is significantly different from

1http://www.google.com

2 INTELLIGENT DOCUMENT RETRIEVAL

shops

students_union

bars

welfare

entertainments

european_union

union

... trade

human_rights

trade_union

social_studies

©c 2003 IEEE

Fig. 1.1. Sample relations in a domain model

formal ontologies or lexical resources such as WordNet - a large dictionary-
like resource originally developed for English that encodes linguistic relations
between lexical items (e.g. synonymy, antonymy etc.) [50].

However, such a domain model is generally not available. Existing linguis-
tic knowledge sources and ontologies tend to be either too generic (this is a
problem with WordNet) or very knowledge-intensive and tailored specifically
to some well-defined domains, e.g. [4, 60]. In other words, they do not reflect
the particularities of a newly selected document collection and therefore are
not the best candidates for assisting users in a search process. Furthermore,
changes in the collection or an entirely new domain would require changes in
the ontology, which can be a complex task [105].

What can be done about this? Ideally, we would like a domain model
constructed on the fly in an automated fashion without assumptions about
the documents’ content, i.e. without having to know what the documents are
about. We will discuss in detail how the documents’ markup structure can be
used to build such models.

Electronic documents typically have some internal structure. It could be
HTML markup in which the documents are encoded; it could as well be some
less obvious and more implicit structure. However, we are not interested in
documents whose content has been fully semantically marked up. In other
words, what we look at is the automatic processing of partially structured (or
semistructured) data. The term semistructured data is not clearly defined in
the literature. Semistructured data is sometimes even refered to as unstruc-

1 Introduction 3

Doc 1
Doc 2

Doc 3

Doc n

...

...

...

...

...

...

Offline

}

Online

}

Online

}... User

Standard

Search Engineguide buscampus

Extraction
Concept

&

...

european_union

...campus_map
students_union

union

<meta name="keyword" ...>

travel

System
SubmissionDomain Model

Domain Model

Dialogue System

Document Collection

Utilization of

<h1>Campus Information</h1>

The University campus ...
...

...
Campus Map

Querytrade

Domain Model
Construction

©c 2003 IEEE

Fig. 1.2. Extraction and application of markup-based knowledge

tured data [24]. Soderland characterizes semistructured texts as texts that
have “fairly stereotyped information but are not rigidly formatted” [143].
Henzinger et al. use the term vaguely-structured data to describe the data
that is typically found on the Web [65]. We will adopt the flexible notion of
data “that is neither raw data, nor very strictly typed as in conventional data-
base systems” [1]. We will consider vaguely-structured, partially structured and
semistructured data as synonymous terms in this context.

We will demonstrate how we can turn such document collections into us-
able domain models. The crucial idea is that a tremendous amount of implicit
knowledge is stored in the markup of documents. But not much has been
done to use this particular knowledge. We will exploit this knowledge to build
domain models in order to assist a user in a search process. Pure markup can
be used to build a domain model, but that is not enough when searching a
document collection. It will be most useful in combination with a dialogue
strategy. A simple dialogue system that has access to the automatically ex-
tracted domain knowledge will be a sensible tool to assist users in searching
the document collection. Figure 1.2 is a simplified overview of the processes
involved and discussed in this book.

To summarize, we can distinguish three major areas that this book will
cover:

• We will show how markup structure can be used to build domain models
rapidly and fully automatically.

• We will apply the knowledge that has been extracted in the first step.
We will demonstrate how such domain models are able to assist a user by
refining the choices as he or she searches the document collection. This
will appear to the user as a specialized dialogue with the system.

• Finally, we will present implemented systems which can easily be adapted
to new document collections.

4 INTELLIGENT DOCUMENT RETRIEVAL

1.1 Introductory Examples

This section will illustrate the research problem addressed by this book with
the help of two example collections. A more formal account will be given later
on.

The first document collection is the University of Essex Web site. One of
our running examples in this sample collection will be the user query “union”,
which is a frequent query according to the log files of the local search engine.
The user might not be aware of the fact that the query is highly ambiguous.
In fact, there are Web pages in that domain presenting information about the
trade union, students union, the European union and a Christian union. Not
just that, but there are a number of pages devoted to discriminated unions.
That could well be the pages the user expects as an answer if that user is a
student currently writing an assignment in the Distributed Computing module.
A domain model that reflects these possible interpretations could be a useful
aid to inform the user of what types of documents there are (or are not) in
the space of possible answers. At the same time it would guide the user in the
process of narrowing down the search by explicitly offering sensible choices.
Obviously, such knowledge is typically not available as an off-the-shelf product
because it will vary dramatically between different document collections. The
graph in Fig. 1.1 could be part of a useful domain model. Applied to the
“union” query it may trigger a system response such as displayed in Fig. 1.3.

The actual implementations that we will discuss later on vary from this
system response in that they combine the information provided by the domain
model with results of a standard search engine as can be seen in Fig. 1.4. For
simplicity we will sometimes use the type of response in Fig. 1.3 elsewhere in
the book.

Another query in this domain could be “lecturers in AI” for which the
existing university search engine cannot find any result even though the in-
formation is there, but not explicitly on a single page. Again, we would like
to see some suggestions based on the domain model that would allow us to
locate documents we are interested in. In this particular case the system could
propose query relaxations (e.g. suggest partial matches or some more general
term for which matches can be found).

To cope with both types of queries we process the document collection by
exploiting the HTML tags used to mark up the documents. As we will see
later, we can utilize the different types of HTML markup contexts without
trying to understand the documents. The result of this processing step is a
simple domain model that can either be used to browse the collection or to
assist a user searching for documents. The domain model is a set of term
hierarchies which are compared against the user query, allowing the search
system to offer suitable choices to constrain or relax the original query.

We will discuss both the construction of the domain model and the di-
alogue framework that applies such a model. One motivation for the use of
a dialogue manager is that an automatically constructed domain model will

1 Introduction 5

Fig. 1.3. Applying a domain model in ad hoc search

necessarily be incomplete. To use the last example: if a link between lecturers
and AI cannot be uncovered, then a dialogue system may still be able to give
the user some assistance as displayed in Fig. 1.5.

Let us briefly look at a very different document collection: a classified
directory. Although this type of data sources will not be our main focus, it is
a good example to demonstrate the flexibility of the methods introduced in
this book.

An actual example collection are the local Yellow Pages2. Note that al-
though we talk about a specific collection in this context, the issues discussed
here are more general and can also be observed in other types of classified
directories. The electronic version of the Yellow Pages we had access to is en-
coded as the so called Yellow Pages data file or production tape in electronic

2Yellow Pages® and Talking Pages® are registered trade marks of Yell Limited in the
United Kingdom.

6 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 1.4. Combining search engine results with the domain model

form for each area. It is an interesting data source that bears some resemblance
with the documents of a Web site as seen in the first example in the sense that
there is some structure, but much of it implicit rather than explicit. We find
different types of advertisements that consist of business names, address in-
formation etc. However, in the actual Yellow Pages data file the markup tends
to be fairly coarse-grained. The structure allows us to identify an individual
advertisement and the name of the business, but there is no explicit markup
that would tell us what part of this entry represents a telephone number, the
address etc. Moreover, we typically find some free text which is an optional
natural language portion to be printed in the advertisement along with the
address as in the following example:

1 Introduction 7

Fig. 1.5. Simple relaxation options proposed by the search system

Kruschwitz Golf & Leisure Wear

Suppliers Of All Top Brand Golf Equipment

100 High Street Colchester 822990

The point is that the markup structure is not rich enough to semantically
encode the documents (i.e. advertisements in this context), but it makes it
possible to distinguish different parts of a document (which could then be ana-
lyzed further). Although the advertisements are not encoded in some standard
markup language, the document source can be abstracted in much the same
way like Web documents, only that there are other types of markup and they
are realized differently. Searching this data collection should be almost identi-
cal to searching the University of Essex Web site. In both cases we can have a
very simple dialogue system as a mediator between user and database that has

8 INTELLIGENT DOCUMENT RETRIEVAL

access to the automatically processed data collection. However, when we look
at collections of Web documents we will discuss in detail both the automatic
construction of a domain model and its utilization in the search process. In
the classified directory example the main focus of the application will be on
the actual dialogue manager rather than the domain model construction. A
reason for that is that - in contrast to Web documents - additional explicit
knowledge sources (such as classification structures) are typically available in
such collections which can be utilized in the model construction and in the
search process.

To summarize, we are interested in processing and searching partially
structured collections of natural language documents that can be character-
ized as being:

• more structured than free text
• less structured than traditional (relational) Database Management Systems

(DBMS) or semantically encoded data sources such as XML documents
• typically not excessively large, possibly even rather small to apply standard

Information Retrieval (IR) methods effectively.

We shall now look at the methodology we will apply in more detail. Later
we will describe the extraction and application techniques more formally.

1.2 Using Markup to Extract Knowledge

“The Semantic Web will bring structure to the meaningful content of
Web pages, creating an environment where software agents roaming
from page to page can readily carry out sophisticated tasks for users.”
[16]

Finding information in a large pool of documents is a task that researchers
in the Information Retrieval community have been working on for half a cen-
tury. For a long time the main paradigm has been to treat documents as a bag
of words. The frequency of occurrences and the distribution of words within
the document collection can then be used to approximate the documents most
closely related to a user query.

However, the emergence of the Web has had a huge impact on this research
for a number of reasons, including

• the fact that everybody can be an author and publish their work online
• the resulting massive growth of online data
• the use of markup languages that provide online documents with additional

structure, and
• the growing interest in new search methods arising from this situation.

1 Introduction 9

This book will not discuss how these observations can be used to improve
search applications in general by indexing the documents in a more sophis-
ticated way, nor will it discuss whether or not such a strategy is feasible or
even useful for large scale search engines (the interested reader will find such
issues discussed in much detail in [28]). We will instead focus on “narrower”
domains, such as Web sites or other document collections. The reason is that
there are many thousands such collections which are all different and we want
to build domain models which reflect knowledge that is specific for the collec-
tion rather than general purpose knowledge. In addition, we want to be able
to build such models rapidly.

We are still far away from Berners-Lee’s vision of a Semantic Web [16].
Despite the fact that there is a constantly growing quantity of data sources
containing explicitly encoded semantics, most data still comes with much less
structure, usually encoding presentation details rather than content. However,
we are witnessing a rapid growth in the number of specialized search engines
alongside numerous systems restricted to a particular domain (e.g. company
Web sites or intranets). The indexing processes described in this section (and
in more detail later on) will concentrate on these smaller domains. In partic-
ular, it will show how the construction of a domain model on the fly can lead
to a search engine tailored to a specific domain.

The indexing process which includes the automatic construction of a do-
main model is the fundamental step towards an “intelligent” search system. A
good domain model could drive a user-friendly interaction which goes beyond
simple keyword matching. Instead, by interacting with the user the system
helps the user navigate through the possible matches until the appropriate
documents are found. Alternatively, such a model can be used to browse the
document collection.

Why can we not adopt existing structured knowledge sources and incor-
porate them in the search system? Entirely relying on domain-independent
sources like WordNet has been shown to not be very suitable unless these
sources are customized in an expensive manual process. We will discuss this
issue later.

The idea of automatically acquiring domain models from documents is
not new. Different approaches exist to preprocess the document collection to
construct a model automatically. However, this research has so far focussed
mainly on word co-occurrences or linguistic information, e.g. [134, 9, 99].

We will follow an alternative approach, which is to capture the semantic
content of a document collection by exploiting the markup of the documents.
Basically, the number of index terms is reduced dramatically by selecting only
words or phrases that are found in at least two different markup contexts in
the same document. We will call such terms concepts (or conceptual terms).
This process can be performed automatically with no expert knowledge. It is
largely independent of the actual language used in the document and more
importantly it uncovers the structure of a collection of documents while itself
being domain-independent. It should not be seen as an alternative to standard

10 INTELLIGENT DOCUMENT RETRIEVAL

search technologies such as those applied in Web search engines. Instead, there
is great potential in the combination of state-of-the-art search mechanisms and
the knowledge that we extract from the documents. When we introduce the
implemented prototypes later on we will show how we merge the results that
come back from a standard search engine with the knowledge uncovered in
the domain model construction process.

Obviously, the term concept is heavily overloaded in the scientific world and
here we introduce yet another interpretation. Nevertheless, it seems to be the
most appropriate terminology in this context and we will use it consistently
throughout the book.

To use a concrete example of how concepts are extracted we look at Web
documents. For this type of documents we may want to define markup con-
texts based on frequently used HTML tags, such as the tags that identify the
document title (i.e. <title>), anchor text (<a>), headings in the document
(<h1>, <h2>, ...), text enclosed in meta tags (i.e. tags that the author of the
document provides to describe the content of the Web page) etc. Any term
that can be found in more than one of these contexts in a document will
then be considered a concept. We may identify a handful of such terms for a
particular document; for other documents we may not find any at all. Note
that this concept identification process avoids the interpretation of individual
markup contexts which makes the method much more generic than techniques
for knowledge acquisition that rely on specific assumptions about the use of
certain tags, commonly used patterns etc. as for example suggested in [103].

However, this is just one example, and we are by no means restricted to
HTML documents. If we want to use the same methods to identify concepts
in the different sections of this book, we may define markup contexts based on
the font types used in the document. This would give us a number of different
markup contexts (e.g. text in the default font, italicized font, bold font etc.)
We would then treat the terms “concepts”, “domain” and the compound
“domain model” in this section of the book as concepts (they all appear in
two markup contexts: in the default font and italicized font).

Apart from identifying concepts we introduce related concepts. Two con-
cepts are related if they were both found to be concepts in the same document.
In the above example we identified the terms “domain model” and “concepts”
to be conceptual terms, but furthermore they represent a pair of related con-
cepts.

The domain model (we will also use the term world model) we construct
exploits the relationship between concepts. The result of the model construc-
tion process is a set of concept hierarchies. The hierarchies (part of one is
displayed in Fig. 1.1) are applied in a dialogue system which will be discussed
in more detail in the next section.

We should stress at this point that we adopted the term hierarchy and will
use it throughout the book although one could argue that the structures we
call hierarchies are in fact simple directed graphs. However, from a pragmatic
point of view we interpret nodes in the graph as possible user queries (to be

1 Introduction 11

discussed shortly), and the further away we move from the root node the more
specific the queries get. Hence, we decided to call these graphs hierarchies.

As indicated, one of the main motivations for automatically acquiring a
domain model in the first place is the inadequacy of a domain-independent
knowledge source like WordNet to search Web sites or other document collec-
tions or specific domains of documents in the widest sense. This is true for at
least the following reasons.

First of all, a number of relations that may be inherent in the documents
of the domain will not be present in the knowledge source, i.e. relations that
reflect world knowledge rather than linguistic information (cf. the union ex-
ample in Sect. 1.1).

On the other hand, a large number of links in a domain-independent model
will be entirely irrelevant to a specific domain. To stick to the union example,
WordNet senses two (the United States during the Civil War), three (r the act
of pairing a male and female for reproductive purposes) and five (state of being
husband and wife) are not relevant to the University of Essex sample domain
at all, nor are some of the other senses. However, there is no way to decide a
priori for a given document collection which senses are (or are not) relevant.

In addition to these problems, the domain may change over time which
makes it desirable to construct a model on demand exploiting the actual data.

Furthermore, a domain model that is based on linguistic concepts will
not be best suited for tasks like interactive search. A simple user study that
investigated the usefulness of automatically created concept hierarchies in an
interactive query expansion task found that far more than half of the expansion
terms selected by users were terms conceptually related to the initial query
[74]. For example, tooth and dentist are considered conceptually related but
this type of relation is not defined in WordNet. Synonyms (i.e. knowledge that
can be found in WordNet) were chosen much less frequently.

Despite all these concerns we have to accept that the structure of a knowl-
edge source like WordNet looks very promising for the type of application we
have in mind. The reasons include the clear and simple organization, its ap-
plicability to natural language engineering systems, and the advantage that
the model does not have to be rebuilt every time the document collection
needs to be re-indexed: The model is independent of the actual documents.

To make the last point clearer, compare this with a very different ap-
proach in which the domain knowledge is closely linked to the documents
and not separated. The MIT START system3 links knowledge to the actual
documents [78, 79]. START is a question answering system that indexes a
document collection by annotating documents and storing those annotations
in a knowledge base. The online search system tries to match the user query
against the annotations. These annotations essentially describe the questions
that some part of a document is able to answer.

3http://www.ai.mit.edu/projects/infolab/

12 INTELLIGENT DOCUMENT RETRIEVAL

The interpretation of the concept hierarchies in our domain model is differ-
ent from a number of other models. In WordNet for example the links between
two sets of terms stand for clearly defined semantic relations (e.g. hypernymy,
antonymy etc.). Noun compounds can also be classified according to the type
of relation between compounds [127]. Furthermore, thesauri have been built
for specialist domains to represent hypernym-hyponym relationships between
terms, e.g. [3] (but the methods rely on specific linguistic cues). Other term
hierarchies are constructed in a way that general terms are placed at the top
levels, more specific terms are found further down [134].

A different approach is to use an existing subject taxonomy and enrich it
by placing potential query terms into the appropriate categories as proposed
in [34]. However, this approach relies on “constructing the hierarchy based
mainly on the analysis of human observations”; in other words human effort
is required to construct a taxonomy in the first place.

Our aim is not to capture the actual semantic relations that exist between
concepts but the fact that there is some relation, one that can be used to
guide a user in the search process. We assume that the concepts that we can
extract in an indexing process simply based on markup structure are likely
to be among those terms that users submit as real queries when they search
the document collection. In fact, the log files of the queries submitted to the
search engine in our University of Essex sample domain prove that this is a
sensible assumption (to be discussed in more detail in Sect. 6.3).

We construct the domain model automatically in an offline process. The
process is (as indicated earlier) based on our idea of related concepts. We shall
briefly outline the model construction process here. Later on we will look at
it in more detail.

Each hierarchy in the model consists of nodes that a concept represents (see
Fig. 1.6). Exploiting the fact that concepts identified in the indexing process
are likely to turn up as real user queries, the model-construction process is a
sequence of user request simulations that does not use live user queries but
rather the identified concepts. Each concept is a potential query for which a
hierarchy is built. We start with a single concept as a possible user query (for
example language linguistics in Fig. 1.6). Using the relations detected in the
source data, we can then explore all possible ways of constraining this query
by adding a single concept to the query in a query modification step. The
interesting terms that could be added in such a step are all concepts related
to the original query term (concept). A new node is automatically created if
there are any documents in the collection matching the refined query.

The model construction process is an iterative process that can be applied
to the new queries until eventually we end up in leaf nodes - that is, nodes
that typically represent very specific queries for which only a small set of
documents can be found. In each of those iterative steps, we would expand
the current query by a single concept related to all query terms collected so
far. Roughly speaking, for each concept identified in the document collection
we construct a term hierarchy as follows:

1 Introduction 13

course_material

research_interest

study_scheme

essex_graduate

volume

language_paper

student_paper

efl

language_department

graduate_student

language_learning

...

language_linguistics

Fig. 1.6. Concept tree for the compound language linguistics

1. Create a root node that contains the concept.
2. Pick a node, collect all concepts from root node down to the selected node.

For each concept that is related to all these concepts, create a daughter
node.

3. Perform step 2 until there are no unexplored nodes left.

Hence, once we have constructed a tree for a particular concept, then
a path from the root node to any other node in this tree can be seen as
adding new terms to a query. In other words, any node represents a cluster
of documents in the collection: all those documents that match each of the
concepts associated with the nodes passed by traversing the graph from the
root to the current node.

As a result of this offline model construction process we get exactly the sort
of structures that we are interested in: a set of trees with terms representing
the nodes. These structures are not calculated at run time. Furthermore, in a
relatively static domain we will not need to build a new domain model every
time the collection is re-indexed.

Let us go back to the example. The compound language linguistics is a
concept that has been identified in the indexing process. Figure 1.6 displays
part of the tree created with language linguistics as the root node. Not all
concepts related to language linguistics are displayed, only the three most rel-
evant ones. The most relevant related concept is efl which stands for “English
as a Foreign Language”. There is only one more concept related to both of
the terms language linguistics and efl, which is language learning. This is the

14 INTELLIGENT DOCUMENT RETRIEVAL

language

course_material

sulawesi

acquisition

spanish

research_interest

efl

corpora

second_language

language_acquisition

information_system

Fig. 1.7. Concept tree for the term language

end of the path. The construction process of the world model determined that
there was no related concept that could be added to the three others which
would describe a non-empty cluster of documents.

How does this relate to real user queries? Well, “language and linguistics”
is a query frequently submitted to the search engine of the sample domain.
This means the domain model can actually assist a user who submits the
query.

Figure 1.7 depicts the top ten related concepts for language (“languages”
is a query slightly less frequently submitted to the search engine than “lan-
guage and linguistics”). Unlike in the first example we only display the first
level (below the root node) of the tree. Naturally, the tree is much bigger than
the one in the earlier example. As can be seen the related concepts are not
necessarily related to linguistics. The third most important concept related to
language is sulawesi. It turns out that this term does not refer to an Indone-
sian island, but to some framework in the context of wearable devices that
deals with natural language understanding. Despite the fact that an obviously
existing relation between the two terms language and sulawesi was discovered
in the automatic knowledge extraction process, it is not immediately clear
whether this is in fact useful in this context. This can only be established by
observing real users’ behaviour, to be discussed later in the book.

Before we outline how the extracted knowledge can actually be utilized we
want to point out that what we said about our definition of the term concept
(being heavily overloaded) is equally true for terms like domain model, related

1 Introduction 15

concepts etc. The interpretation of each of these terms varies from one research
community to another. We will formally define the terminology used in this
book in Chaps. 3 and 5.

1.3 Applying the Extracted Knowledge

“A tremendous amount of heterogenous information exists in elec-
tronic format (the most prominent example being the World Wide
Web), but the potential of this large body of knowledge remains un-
realized due to the lack of an effective information access method.”
[78].

We just discussed the issues involved in characterizing and processing the
data sources, getting at the actual content of them and organizing the ex-
tracted knowledge in some simple models. This pre-processing step is essential
for what is to follow, the construction of a simple specialized dialogue system
that allows a user to search through the document collection. This dialogue
system offers and makes choices about search through a set of documents
based on the domain knowledge extracted automatically from the documents’
markup structure.

Our approach inherits a number of ideas and motivations from elsewhere.
For one, it has to be accepted that state-of-the-art search engines can handle
a large percentage of user queries nicely. Therefore, we do not want to ignore
established search technologies. Instead, we want to tackle the remaining per-
centage of queries that cannot be handled in the straightforward way as it is
done by search engines.

A motivation for our approach of a simple dialogue system to search Web
documents in particular is a user study concerning human computer interac-
tion issues presented in [32]. The study comes to the conclusion that users
prefer to see some categorized output rather than a simple list of ranked doc-
uments. It was shown to be easier for the users to get to the right documents
quickly by using a hierarchical classification structure.

The type of model we construct can function as a directory-like struc-
ture similar to those found in classified directories like the Yellow Pages or
manually maintained Web directories such as Yahoo!4!! or the Open Directory5.

Knowledge sources created like this can then be utilised in applications
like browsing, information retrieval, document clustering or classification. We
concentrate on information retrieval, more specifically, ad hoc retrieval us-
ing a simple dialogue system. The domain model can be applied to guide a
user through the term hierarchies as one would go through a directory struc-
ture: choosing some entry point and then navigate within this hierarchy in a
hierarchy-driven fashion.

4http://www.yahoo.com
5http://www.dmoz.org

16 INTELLIGENT DOCUMENT RETRIEVAL

Earlier, when we discussed the domain model construction we actually
explained how the offline construction process works. Concept terms are used
to modify queries consisting of other concept terms and the results of that are
encoded in the domain model. As long as the user submits queries that consist
of terms identified as concepts in the indexing process, a simple lookup in the
domain model will retrieve a number of query modifications without the need
of any online processing. After all, the domain model is based around the idea
of how to organize discriminating terms so that the domain model is a useful
tool to be applied in the search task.

But when dealing with real user queries we will not be able to rely entirely
on what is encoded in the domain model. We have no idea what queries are
going to be asked and how the user decides to continue in each interaction
with the system. Therefore we will have to consider creating other options on
the fly by consulting the available knowledge sources.

In order to apply the domain knowledge sensibly we shall set out a few
basic (informal) requirements that need to be met by a search system that
utilizes the domain model in this sense. We want such a system to:

• allow the user to refine or relax the information request if necessary
• take as little as possible (in terms of dialogue steps)
• present the user a number of choices to continue the dialogue if this is

appropriate
• present the best possible choices only
• avoid unnecessary dialogue steps.

To illustrate this, imagine a Yellow Pages lookup. An ordinary request
would start off by selecting classifications followed by finding the appropriate
advertisements listed under the classifications. This is the obvious strategy
for a printed directory, and it seems useful to adopt that for an online system
as well (be it a classified directory or a Web site).

Consider the somehow extreme example of a user searching for “visa ser-
vices”. It seems logical to first select the relevant classifications from the clas-
sified directory and then if necessary ask the user to refine or relax the query.
A less useful approach would retrieve all advertisements that can be matched
against the two terms visa and services (a strategy that would deliver a large
number of unrelated documents for this request since visa could simply re-
fer to a payment method). True, a system like Google does record different
types of matching terms depending on the context they were found in. How-
ever, distinguishing a number of different flat keyword tables does not differ
in principle from the simple data-driven IR approach. The point is that in a
search system that uses conceptual information encoded in a domain model,
we try to separate relevant information from less relevant information at the
model construction stage rather than at retrieval time.

Because it is a common problem that a query typically recalls “too many”
matching documents one can easily construct numerous examples where the
hierarchy-driven idea seems more appropriate than just ranking the results

1 Introduction 17

retrieved by matching a user query against database entries. Consider a Yel-
low Pages request for alarms. Possibly relevant classifications as found in the
Colchester (Essex, England) directory are:

• Alarm systems
• Burglar alarms & security systems
• Car alarms & security
• Fire alarms
• Gas alarms
• Intruder alarms.

With or without knowing the explicit classifications it is not clear for the
system which documents will be most relevant. In this specific case a single
dialogue step could establish which of those classifications the user is after.
To make the point more general, even if there are no explicit classifications
like the ones just listed, it is desirable to create them automatically and then
utilize them in the search process.

In other words, standard information retrieval can be seen as a data-driven
strategy of matching query terms to document indexes, but in contrast to that
we use structures similar to classifications in a classified directory which will
allow a hierarchy-driven search strategy starting at the top level of general
classifications going down to the document level as depicted in the example
in Fig. 1.8. Our “classifications” are concepts. We use the term clusters in the
figure. A cluster in this context is a set of documents that matches a set of
“classifications” (represented by concepts). The top clusters in the hierarchy
could be representing single concept terms (e.g. alarms), clusters further down
will represent a number of concept terms (e.g. alarms and burglar alarms) that
describe a smaller set of documents. This example gives only a motivation, in
reality there will be a (possibly large) number of hierarchies.

1.4 Structure of the Book

This book consists of two main parts, the first one describes the theoretical
framework and the second one is about practical applications that are based
on this framework.

The first part is structured as follows:

• We will start with a review of related work (Chap. 2). We will first discuss
literature that has to do with the indexing and domain model construction
steps. We then look at the related work that is concerned with the search
process.

• This is followed by a chapter that explains the framework of how to char-
acterize and how to process partially structured data, i.e. all the offline
data processing steps including the construction of a domain model ex-
tracted automatically from the documents’ markup structure (Chap. 3).

18 INTELLIGENT DOCUMENT RETRIEVAL

Doc 2Doc 1

Index 22Index 21Index 14Index 13Index 12Index 11

Cluster 2 Cluster 4

Doc 3

Index 31 Index 33Index 32

Cluster 6

Cluster 5Cluster 3Cluster 1

H
ie

ra
rc

hy
-d

ri
ve

n
D

at
a-

dr
iv

en

Fig. 1.8. Two search strategies

We will briefly outline how additional knowledge sources can be incorpo-
rated (Chap. 4).

• In the final chapter of the first part (Chap. 5) we will introduce the
theoretical background of a specialized dialogue system that offers and
makes choices about search through the set of documents based on the
constructed index tables and domain models.

The second part describes some practical applications which employ those
techniques and have been implemented as working prototypes:

• We will first introduce UKSearch, a search system for Web documents.
Two domains will be discussed, the University of Essex Web site as well
as the BBC News Web site (Chap. 6).

• The following chapter will discuss in detail a number of studies that we
have performed as part of the development of the UKSearch system to
demonstrate the usefulness of the outlined techniques. We will present
evaluations as well as discussions of the results and conclusions that we
can draw from these experiments (Chap. 7).

• We will then look at the Ypa system, a search system for data in classified
directories such as the Yellow Pages (Chap. 8).

1 Introduction 19

We will conclude with an outlook on some future directions for the field
(Chap. 9).

This book contains work published in earlier articles, namely [43, 49, 86,
87, 88, 89, 90, 91, 92, 161].

Part I

The Model

2

Related Work

It seems natural to break down the discussion of related work into two parts.
We will first review the literature related to the data analysis and knowledge
acquisition step (Sects. 2.1 - 2.7). We will then discuss approaches that exist
to help users in the actual search process (Sects. 2.8 - 2.11).

There are a number of different communities doing research in the field of
automatically processing, extracting and accessing partially structured data.
Their approaches are quite distinct in some ways but overlap in other respects.
The growth of the Web contributes to the fact that a combination of tech-
niques is becoming more common. This “hybridisation” means, that some of
the work discussed here would equally fit under different headings. Many of the
approaches apply natural language processing or machine learning ideas, or
both (which is why such headings have been avoided in this chapter). Roughly
speaking, any approach to solve the problem of finding the right information
for a user’s need from a set of partially structured documents either relies
on enormous amounts of data or on structural information associated with
the documents, neither of which we can take for granted in the context of
this book. The following is by no means a comprehensive overview of related
work, but we do discuss the main issues with respect to the processing and
interpretation of the data relevant in the context of this book.

Once we have indexed the data sources, we need to be able to access them
quickly and efficiently, making use of all the structure and information we
have detected in the indexing process. After reviewing the literature that is
mainly concerned about the indexing process, we will then look at how the
indexed data sources can be searched. More specifically, we will concentrate
on search that goes beyond a simple match of a user query against a backend
database but involves some sort of dialogue between user and system. This
type of search can be an extremely simple interaction but it might as well be
a fully fledged dialogue system. We will look at advantages and disadvantages
of particular approaches before characterizing a simple dialogue system that
seems most suitable for the type of data discussed in this book.

24 INTELLIGENT DOCUMENT RETRIEVAL

Again we look at a rather broad field of research. Research focus and ob-
jectives differ significantly between different research communities that work
on dialogue systems. A large number of classifications of types of dialogues
exists. One such classification would characterize our task as an information
seeking dialogue. In the following we will concentrate on this particular type
of dialogue and dialogue systems. Some of the most closely related work in
this field is research into Web search and browsing as well as dialogue systems
that have been developed in the speech community.

As before, the sections do not strictly follow the boundaries between re-
search communities, nor is the discussed work exhaustive. The aim is however
to highlight literature that is most relevant in this context.

2.1 Information Retrieval

Indexing documents has been a research topic in the information retrieval
(IR) community for many years [133]. The traditional task is to select a set
of documents from a large collection so that the selected documents satisfy a
user’s query. The Text Retrieval Conference (TREC) series has contributed
to the fact that this research area now attracts a much wider interest than in
the decades before.

To enhance precision and recall in an IR system there have been approaches
to abandon the earlier idea of treating documents as a collection of keywords
and take other aspects into consideration. Natural language processing (NLP)
has been incorporated into IR systems (lexical processing, stemming, POS
tagging etc.) [101, 140]. However, there is an ongoing discussion about how
much linguistic knowledge can contribute to IR systems. Spärck Jones¨ 1 ar-
gues that TREC has continued to cast doubt on the added value, for ad hoc
topic searching, “on the value of sophisticated natural language processing for
retrieval” [145]. Whatever the outcome of this debate, “NLP techniques used
must be very efficient and robust, since the amount of text in the databases
accessed is typically measured in gigabytes” [171].

The Natural Language Information Retrieval system NLIR [146] uses par-
allel indices which represent the same document using different indexing meth-
ods. This stream architecture contains index tables for word stems, phrases,
proper names etc. which are merged to get a better overall result than apply-
ing each of the streams individually. Simple linguistically motivated indexing
turned out to perform no better than statistic approaches, while more so-
phisticated ideas like concept extraction proved too expensive for large data
collections [147].

Another idea is to extract the semantic content from documents in order
to link related documents. Green proposes to use lexical chaining for that [59].
He focuses on the problem of synonymy and polysemy: documents concerning

1We will spell the name Spärck Jones with an umlaut throughout the book because that is¨
the spelling used on her homepage: http://www.cl.cam.ac.uk/users/ksj/

2 Related Work 25

the same topic do not necessarily use the same words. In a first step all chains
of semantically related words are detected based on WordNet’s synsets and in
a second step for each pair of documents this information has to be compared.
In the reported work no significant improvement over standard IR techniques
was noted.

We are interested in these developments because although the processing
techniques presented in this book focus on structural rather than linguistic
information, we are typically not dealing with enormous amounts of data
that would prohibit the inclusion of some linguistic analysis. We do in fact
apply low level linguistic processing (stemming, part-of-speech tagging and
selection of phrases).

Finally, the emergence of the Web has triggered a growing interest in in-
formation retrieval techniques. A natural consequence was that a Web track
was introduced in TREC. One question for the Small Web Task was to find
out whether link information in Web data can be used to obtain more effective
search rankings than can be obtained using page content alone. First investi-
gations showed that hyperlinks did not result in any significant improvement
[136]. The conclusion of these early results was that no measurable benefit
was gained on standard TREC retrieval measures through use of links [63].
However, a case study did show that commercial Web search engines (that do
use link structure) are significantly better than state-of-the-art TREC algo-
rithms in finding Web pages of an entity such as a company, a university or
an individual [139]. New TREC results give rise to similar conclusions. Re-
sults have shown that in order to find homepages (of a company for example)
the exploitation of link structure was very effective. On the other hand, for
standard ad hoc search exploitation of link information did not help [62]. The
TREC conference recently distinguished a topic distillation and a navigational
task in the Web track. The first one aimed at finding a set of homepages rele-
vant for a query (this is different from ad hoc search where all relevant results
are to be located). It was found that the use of anchor text was important,
stemmimg was often helpful and URL information and link structure can also
be helpful. The navigational task aimed at finding a single Web page (such
as finding a particular homepage), and here it was found that different rep-
resentations of the documents based on the document structure and anchor
text seemed useful. Link structure gave mixed results, and stemming was not
necessary for most participants [39].

The information retrieval community is very active, and the reader should
consult TREC’s homepage2 or ACM’s SIGIR homepage3 for the most recent
developments and results.

2http://trec.nist.gov
3http:/www.acm.org/sigir/

26 INTELLIGENT DOCUMENT RETRIEVAL

2.2 Information Extraction

Information extraction (IE) systems typically do not aim at capturing all of
the source data, but at extracting specific types like names, dates etc. [36, 40].
This makes IE systems usually very domain-dependent and that distinguishes
them in principle from the approach discussed in this book. A typical IE
system has access to large electronic data sources to identify proper names,
company names, place names etc. Moreover, all IE systems rely to a certain
extend on manual analysis to identify patterns of interest in the first place.

SCISOR (System for Conceptual Information Summarization, Organiza-
tion and Retrieval) [125], an early information extraction example, works in
the constrained domain of corporate mergers and acquisitions to support im-
precise and inexact queries as well as conceptual summarization by conceptu-
ally indexing the complete input documents. However, it makes heavy use of
large conceptual databases.

In InfoExtractor [141] semistructured documents are split into various re-
gions (evaluation contexts). In each region only certain concepts are searched
for. The analysis identifies a set of predefined concepts in the documents.
The authors rule out approaches based on inducing rules from the automatic
analysis and classification of large numbers of documents because of a lack of
a large training corpus [142].

One specific example of a supervised machine learning approach to learn
IE extraction rules is WHISK. It learns rules in the form of regular expressionsKK
and differs from a number of other systems in that it has been developed to
work on structured, semistructured as well as free text [143].

There are ways to minimize the manual effort by letting the system dis-
cover relevant patterns based on a set of seed patterns [168]. Another approach
is to exploit highly reliable and easy-to-mine data sources - such as databases
and digital libraries [35]. This allows a bootstrap approach which starts with
some initially extracted information to obtain more complex modules such
as wrappers (discussed further down). Those wrappers can then be used to
collect more information that could again be the input for training more so-
phisticated IE engines. The key feature in the outlined approach is that it
exploits the redundancy on the Web, i.e. the fact that the same information
is typically available more than once and in a variety of forms.

There is a growing research interest in the process of capturing the seman-
tic content of whole documents and representing it in an appropriate form.
Essentially, this is an information extraction task. For semistructured docu-
ments this research was pushed by the introduction of XML [17]. The strength
of XML lies in the ability to encode content rather than form. Curran and
Wang for instance convert legacy data into XML [41]. HTML documents of a
particular style are translated into XML by applying a transformation-based
learning approach similar to that in the Brill part-of-speech tagger [18, 19].
Curran and Wang’s learning algorithm is reported to need only a small train-
ing set. Another approach, which again requires a set of examples, is presented

2 Related Work 27

by Zhang et al. [172]. Information extracted from HTML repositories is turned
into structured records. A small set of examples is used to find occurrences
of these seeds. These occurrences are grouped and patterns are recognized.
These patterns are used to find new occurrences which can then be used to
start the next cycle in this iterative process.

The database community too has developed a research interest in how to
represent semistructured data, as well as how to extract parts of it. The Lore
database management system [109] is designed specifically for the manage-
ment of semistructured data. The Information Manifold system [100] allows
uniform access to data in heterogeneous sources, by declaratively describing
the contents and the query capabilities. A particular focus is the processing
of Web documents, aimed at retaining structure and storing data in graph-
structured data models by means of wrappers [94, 132]. This line of work is not
just about accessing and retaining data but also about capturing structure,
for example by transforming HTML documents into XML, or other formats.
A recent example of a wrapper-based approach is Building Finder where in-
formation about buildings is retrieved from a number of different databases,
e.g. geospacial data, white pages, property tax sites etc. [110]. However, any
wrapper-based approach depends very much on a formally defined structure
of the expected input or at least on a document structure that is fairly uni-
form across the collection. Our methods on the other hand do not rely on such
assumptions.

2.3 Clustering

Regarding retrieval techniques, the idea of clustering documents into groups
of related documents was pioneered by van Rijsbergen, who formulated the
Cluster Hypothesis [155]:

“Closely associated documents tend to be relevant to the same
requests.”

Much work in this field concentrates on the question of how to improve
browsing through a document collection for a user who tries to find some
particular information in a large pool of documents. Like information retrieval
approaches, techniques for document clustering normally rely on statistics
derived from huge amounts of data.

Scatter/Gather is a document browsing method for large information
spaces that uses document clustering as its primitive operation [42]. It scatters
the document collection into a small number of clusters. The user receives a
short summary of each group of documents and selects a subset of clusters.
The selected clusters are then gathered together to start the clustering process
again with this subcollection of documents. This reduces the number of doc-
uments in the collection in each step until finally individual documents can
be displayed. The system is designed for applications where it is difficult or

28 INTELLIGENT DOCUMENT RETRIEVAL

undesirable to formally specify queries. The clustering builds on words and
word frequencies.

IBM’s TaxGen text mining project aimed at the automatic generation of
a taxonomy for a large corpus of unstructured news wire documents [113].
A hierarchical clustering algorithm first builds the bottom clusters and then
works its way upward forming higher-level clusters by grouping together re-
lated clusters. The clustering is based purely on linguistic elements in the
documents, e.g. co-occurrences of words (lexical affinities) or names of peo-
ple, organizations, locations, domain terms and other significant words and
phrases from the text (linguistic features).

An example of conceptually indexing a document collection (which can
then be used for clustering) is Keyphind [61]. Machine learning techniques ex-
tract keyphrases from documents in the context of browsing digital libraries.
This comes close to our idea of imposing a structure on the collection by
extracting “important” phrases from each document, but in Keyphind the
documents are much longer and furthermore a manually tagged training cor-
pus is needed to build the classifier. Extractor is a similar system for extracting
keyphrases using supervised learning [153, 154].

Clustering has also been used for concept-based relevance feedback for Web
information retrieval [31]. Following a user query the retrieved documents
are organised into conceptual groups. Note that this is significantly different
from our approach: we aim at constructing a model for the entire document
collection in an offline process, whereas Chang and Hsu use the search results
to build their conceptual groups. One advantage is that we can use the model
not just for ad hoc search, but we could as well assist a user who wants
to browse the collection. Roussinov et al. discuss an empirical study that
investigates how automatic clustering and user feedback can be combined
in interactive Web search [129]. They use clustering to summarize retrieved
documents and select terms that are related to the user query. The user has to
decide which terms should be added. Their approach (called adaptive search)
“utilizes Kohonen Self-Organizing maps and acts as a layer between the user
and a commercial search engine”. The study concludes that the system can
suggest helpful terms and the approach increases the efficiency of information
search.

Another example is Grouper, an interface to a meta search engine which
dynamically groups the search results into clusters labeled by phrases ex-
tracted from the snippets that the search engines returned with the retrieved
documents [169]. Online applications like this differ quite substantially from
traditional offline clustering approaches where the whole document collection
is clustered, rather than a number of retrieved documents. Post-retrieval doc-
ument clustering has been shown to produce superior results. Moreover, clus-
tering a few thousand documents is much quicker than doing this for millions
of documents. However, for the work presented in this book a post-retrieval
clustering approach is not what we want since we are interested in building a
domain model for the entire document collection in advance.

2 Related Work 29

There is a growing tendency to use clustering techniques in standard search
engines to present the user with some query refinement options alongside
the matching documents. Examples are Teoma4, AlltheWeb5, AltaVista6 and
Viv́ simo´ 7. However, an inherent problem of such techniques is to name the
clusters, i.e. select the right text snippets to convey the meaning of the cluster
or to select useful phrases that can serve as query refinement terms. For exam-
ple, a search for “Kruschwitz” on the Teoma search engine recently returned
a single refinement suggestion: Freie Universit, a piece of text that must have
been derived from the (proper) German phrase Freie Universit¨t¨ .

A more advanced example is Kartoo8, a meta search engine that evaluates
the returned matches and generates maps that show the links between subsets
of matching documents. The user can also refine or relax the query by choosing
from a list of query modification terms.

Encouraging results for automatically creating names for clusters are re-
ported by Glover et al. [58]. Clusters of Web pages can be accurately named by
ranking words and phrases in citing documents. This is based on anchor text
and text surrounding the anchors. The ranking of terms is based on expected
entropy loss where the top ranked features by expected entropy loss are those
which “occur in many positive examples, and few negative ones”. Obviously,
this requires training examples (something that we want to avoid). Existing
Yahoo! categories were used as a benchmark.

The same problem, i.e. finding good phrases to describe clusters of docu-
ments in a set of matches returned by a search engine, is addressed in [170].
Potential phrases are extracted from the document titles and snippets and a
learning algorithm is applied to assign a rank to each phrase. The algorithm
exploits properties such as tf.idf, phrase length and phrase independence. It
requires training examples since it is a supervised learning algorithm.

2.4 Classification

Document classification is closely related to clustering; the difference to clus-
tering is that predefined categories exist, normally manually constructed, and
after a training phase new documents can be classified on the fly. A major
difference of standard classification approaches to our work is that we are not
interested in manually constructing classifications, nor do we want general
purpose classifications such as those found in Web directories like Yahoo! or
the Open Directory.

A large number of complex manually constructed classifications schemes
and taxonomies exist, ranging from general purpose classifications such as

4http://www.teoma.com
5http://www.alltheweb.com
6http://www.altavista.com
7http://www.vivisimo.com
8http://www.kartoo.com

30 INTELLIGENT DOCUMENT RETRIEVAL

the Universal Decimal Classification (UDC)9 to domain-specific hierarchical
structures like the Medical Subject Headings (MeSH)10. At a more abstract
level specifications have been developed that can guide the construction of
classifications and taxonomies. For example, the Topic Map Paradigm pro-
vides a “standardized notation for interchangeably representing information
about the structure of information resources used to define topics, and the
relationships between topics” [72].

What all these approaches have in common is that they represent knowl-
edge with formally specified relations, which requires substantial manual en-
coding - very different to the bootstrapping idea that we have in mind.

Northernlight11 is an example of a search engine where the results are
grouped in dynamically created categories, or Custom Search Folders, which
help a user narrow down the search in case of too many matches. The search
used to cover the whole Internet and thus had access to much more data
than what we assume. Custom Search Folders could not be offered if the
query did not retrieve answers and needed to be relaxed, e.g. “Minox dealer
in Colchester” or “Minox Colchester”.

Karlgren introduces the Easify interface that presents search results clas-
sified into different types of genres [77]. He shows that simple measures of
stylistic variations in a set of retrieved documents can be used to distinguish
document genres. He then argues that standard information retrieval systems
cannot easily incorporate this type of information. “The aim is to utilize more
knowledge about documents to improve user control over the information ac-
cess process. Current systems have little knowledge of text, and interaction
with them is designed after that fact. With more knowledge of documents,
such as stylistic analysis can provide, the interaction can be richer.” The
outlined system combines classification based on user-defined, document-base
oriented genres with dynamically created topical clusters.

Automatic classification of Web pages is the focus of the work by Attardi
et al. [10]. They introduce categorization by context which exploits informa-
tion surrounding the links pointing to a document in order to classify that
document. It is seen in contrast to categorization by content which relies on
textual information found in a document. The basic assumptions are: (1) a
Web page which refers to a document must contain enough hints about its
content to induce someone to read it, and (2) such hints are sufficient to
classify the document refered to. Hints are mainly anchors, but also include
structural information found in HTML documents like headings, titles etc.
However, building the profiles of the classifications are left as open issues,
and the two options presented are to either build them by hand or use some
learning techniques.

One problem with classifying Web documents as opposed to more tradi-
tional classification tasks is the heterogeneous nature of HTML documents.

9http://www.udcc.org
10http://www.nlm.nih.gov/mesh/meshhome.html
11http://www.northernlight.com

2 Related Work 31

An interesting approach is to create megadocuments, the concatenation of
all documents in the training set that have been classified in the same cate-
gory [81]. A new document gets assigned to the category whose corresponding
megadocument is most similar to it.

A step further is hierarchical classification, e.g. [46]. Web pages (such as
pages returned by a search engine) are classified into a given hierarchical
structure of categories. Unlike other approaches, Dumais and Chen use a large
collection of very heterogeneous web content, and the classification is based
on support vector machines (SVM). The classification problem is decomposed
into a set of smaller problems by utilizing the hierarchical structure. The
actual classification uses flat summaries of the documents rather than the
complete Web pages. Title, keywords and some description extracted from
the meta tags or the first 40 keywords of the body are used to represent the
documents. In a different paper they present a user study discussing HCI issues
[32]. The organisation of Web search results is the focus, and they conclude
that a category interface is superior to a ranked list of documents.

Existing classification structures have also been employed to help the user
in the search process by matching the initial user query against a classifica-
tion hierarchy and displaying those parts of the hierarchy which appear to be
most relevant to the query. The relevance can be calculated based on a vector
representation of each classification that has been pre-computed representing
the centroid of all documents and subcategories associated with this classifi-
cation. This is the approach taken by the ARCH system [118]. However, such
a system requires a classification hierarchy (with corresponding documents)
in the first place.

Another idea is to use an existing classification structure (taxonomy) with
all its classified documents, such as the Open Directory, as a source for ex-
tracting query modification terms that make the original query more specific.
TACC (taxonomy-based context conveyance) is an example where the user
needs to select a particular category first. The user query and the selected
category are then used to construct a modified (more specific) query that gets
submitted to a search engine [117].

2.5 Web Search Techniques

Web pages contain more structure than many other document collections. In
a typical HTML page, for example, one can find some text marked up as the
document title. Furthermore, one would typically find hyperlinks to other doc-
uments which would include anchor text to describe these documents. Many
other tags can be used to highlight parts of the text or distinguish parts of
the document from the rest. All this structure can be used to extract the se-
mantic content or to judge the relevance of a specific page. The structure that
is exploited in this context is internal document markup or hyperlinks be-
tween documents, or both. One of the reasons to exploit such structure is the

32 INTELLIGENT DOCUMENT RETRIEVAL

observation that Web pages are not always best described by their content.
Kleinberg reports that companies like Yahoo!, Excite and AltaVista do not
use the term “search engine” on their pages. Similarly, the term “automobile
manufacturers” cannot be found on the Web pages of Honda or Toyota [82].
Hence, looking at the link structure might result in a better picture of what a
Web page is about. We will look at some of the most prominent approaches.
Note that we do not use any link structure by default in our knowledge ex-
traction techniques. To extract conceptual information we simply exploit the
markup structure found in a document and no references to the document
from elsewhere. However, hyperlink information can be incorporated. Fur-
thermore, the work discussed in this section is very much related to the book
because the underlying motivation is similar to our problem: to find the most
relevant documents for a user query in a collection of Web pages.

Amitay proposes to look at anchor texts of pages that point to a document
and find similarities between pointing anchors [6]. The Hyperlink Vector Vot-
ing approach applies similar ideas [102]. Rather than depending on the words
appearing in the documents themselves it uses the content of hyperlinks to
a document to rank its relevance to the query terms. This overcomes the
problem of spamming within Web pages and seems appropriate for Internet
wide search but would cause problems in subdomains where the number of
links between documents is much smaller, and certainly problems will occur
for those pages which are refered to by a small number of documents only,
or no documents at all. One can go further by employing not just the anchor
text but also additional structural information found in the context of the
hyperlink as suggested by Furnkranz [55]. For the task of classifying pages¨
using a given set of classes Fürnkranz reports that it is possible to classify¨
documents more reliably with information originating from pages that point
to the document than with features that are derived from the document text
itself. Results reported by Glover et al. [58] are consistent with this: Web
pages can be classified significantly better when using “extended anchor text”
(i.e. anchor text as well as text surrounding the anchor) instead of the text
found in the actual document.

Anchor text can also be exploited to construct potential query refinement
terms which are significantly better than those derived from the document
content [85].

HyPursuit is a hierarchical search engine that clusters the documents based
on both document contents and hyperlink structure [163]. The content-link
clustering algorithm applies a document similarity function that is based on
both term similarity and hyperlink similarity factors. The measure of hyper-
link similarity between two documents captures the path between two doc-
uments, the number of ancestors and the number of descendents that both
documents refer to. Term similarity between two documents is based mainly
on term frequency with heavier weight assigned to terms with attributes title,
header, keyword and address.

2 Related Work 33

The Clever Project [29] looks at topic related search. The domain is the
complete Internet and the problem to be solved is filtering out those pages
which are truly relevant for a specific topic, i.e. the problem of too many
matches. Authorities and hubs are distinguished, places that are either relevant
or are collections of links to those pages, respectively. Authorities and hubs
are found by purely analysing the connections between Web pages. This is
based on the HITS algorithm developed by Kleinberg [82]. A modification
of that algorithm was presented by Chakrabarti et al. [30], again as part
of the Clever Project. The extraction of hubs and authorities is performed
by a combination of text and link analysis. The text in a window around the
hyperlinks is evaluated and the initial weight of a hyperlink which is set before
the iterative calculation starts is increased with the amount of topic-related
text. A related approach is discussed by Modha and Spangler [111].

The Cha-Cha system has been developed for intranets. It imposes an or-
ganisation on search results by recording the shortest paths to the root node in
terms of hyperlinks [33]. But this is only applied once results could be found
by using the search engine. It exploits hyperlinks but ignores the internal
structure of the indexed Web pages.

However, internal structure of Web documents is being incorporated more
and more in standard Web search engines. A prominent example is Google
whose development was inspired by the idea of improving the quality of search
as opposed to efficiency [20]. It makes use of both link structure and anchor
text. Each page gets a ranking value depending on how many other pages
reference to it. Moreover the system associates Web pages not just with the
text in it but also with the text found in anchors linking to this page from
elsewhere. This makes it possible to return pages that have not even been
crawled. Furthermore, Google keeps track of some visual presentation details
like font size to give for example heavier weight to words which appear in a
larger font than the rest of the document.

The question is how much markup structure and, more specifically, which
particular markup tags can easily be utilized to improve the search process.
In other words, which markup tags should we consider when trying to extract
knowledge from documents automatically? A number of options should be
explored here.

First of all, solely relying on particular markup contexts and ignoring all
other text in the documents seems not a very good idea. Although the index
size can be reduced significantly, it has been shown that indexing only the title,
anchor and emphasized text leads to very poor results in terms of precision
and recall [71].

Secondly, it has also been shown that link text is a useful indicator for
the semantic content of a Web page [70]. According to this study, 61% of
the appropriate text was judged helpful or very helpful in indicating the page
content. However, the same study concluded that heading text is much less
useful.

34 INTELLIGENT DOCUMENT RETRIEVAL

Thirdly, Pierre reports that only a third of all Web documents investigated
in a classification task contained meta tags. Nevertheless, if the documents
contained meta tags, then they could be classified most accurately entirely
based on those tags [121].

Finally, for search in intranets anchor text has been found to be highly
effective, document titles however were considered far less useful [47].

The conclusions we draw from these observations are:

• A sensible approach to construct a domain model automatically (exploiting
the markup structure of documents) could be based on a limited number
of commonly used markup tags.

• Such a domain model cannot be a substitute for a comprehensive document
index. A search application that employs the model should not use it as
the only knowledge sources, but combine it with a search engine that has
access to the full index database.

2.6 Ontologies

Significant work has been going on in recent years in the knowledge represen-
tation community. Much of that work is closely linked to the idea of building
a Semantic Web. This research area is not simply about representing informa-
tion but covers a whole range of related issues. For example, an entire issue
of IEEE Intelligent Systems was dedicated to ontologies reporting on work
such as learning ontologies [106], a proposal for a standardized language to
express and represent ontologies called OIL (now superseded by the Web On-
tology Language OWL, a recommendation of the World Wide Web Consortium
(W3C)) [51], as well as tools and techniques for generating and processing se-
mantically enriched content [64]. All this work is quite different to the idea
presented in this book, in that we apply a bootstrapping approach to build
some representation of a document collection which only reflects what can be
derived from the actual data. The result is not an ontology but a set of simple
hierarchies in which the type of links between nodes is not formally specified.
Nevertheless, ontologies are a very active (related) field and some work will
be discussed here.

Ontologies and customised versions of existing language resources like
WordNet are being successfully employed to search product catalogues and
other document collections held in relational databases [60, 53]. Alani et al.
introduce the Artequakt project [4]. In this project ontologies are used to
guide the extraction of knowledge from Web documents, more specifically
bibliographic knowledge about artists. The system uses an ontology in combi-
nation with WordNet, inspired by the observation that traditional information
extraction systems “lack the domain knowledge required to pick out relation-
ships between the extracted entities.” However, a domain-specific ontology is
needed in the first place.

2 Related Work 35

Another example is CS AKTive Space (CAS) that allows a user to ex-
plore information about computer science research in the UK [137]. But the
problems that developers of systems like CAS face are similar, namely the dif-
ficulty to encode the documents in some appropriate format and to construct
knowledge sources such as ontologies that can then be used to reason about
the data available.

An example of using ontologies to build a structured index of a Web site is
presented by Desmontils and Jacquin [45], where the indexing process consists
of a number of steps, including the construction of a flat index (where the
weight of an index term is based on frequency and HTML markup contexts),
the selection of concepts and the mapping of documents against the ontology.
Again, this process assumes that an ontology exists.

Part of the research in this field is the actual construction of ontologies and
large knowledge bases (or in fact the mapping from one knowledge source to
another one, e.g. [56]). The cost to create the resources can be enormous and
it is difficult to apply these solutions to other domains where the document
structure or domain coverage is not known in advance. There is also an ongoing
discussion as to how applicable ontologies are. Spärck Jones argues that the¨
Text Retrieval Conference series (TREC) “has continued to cast doubt on
the added value, for ad hoc topic searching, of structured classifications and
thesauri or (to use the currently fashionable term) ontologies” [145]. This is
part of the argument referenced earlier in the section on information retrieval
(Sect. 2.1).

There are some fundamental problems with ontologies. A major problem
is that “there is a lack of methods and tools supporting and facilitating on-
tology reuse”[104]. This is a motivation for Maedche et al. to introduce an
infrastructure to register ontologies, to allow the reuse and to support the
evolution of ontologies.

There is some more related work that should briefly be discussed here
where the focus is more on the automatic knowledge acquisition side.

Moldovan et al. acquire domain-specific knowledge by using WordNet as a
core ontological knowledge base and enrich it with relations found in a corpus
of documents [112]. It is necessary to identify seed concepts to start with.
The knowledge extraction is based purely on linguistic information, and new
concepts and relations are derived from isolated sentences. A human inspects
the results and accepts or rejects them.

Fujii and Ishikawa describe their work as either linguistic knowledge ex-
traction or (from an IR point of view) as construction of domain-specific Web
search engines [54]. Their methods extract knowledge from HTML documents
by looking for patterns that are typically used to describe terms. These pat-
terns can be language-based or markup-based. However, the methods actu-
ally aim at finding term descriptions. Furthermore, the NLP-based extraction
methods are language dependent, while the HTML-based methods are essen-
tially investigating particular tags and the text immediately following those
tags.

36 INTELLIGENT DOCUMENT RETRIEVAL

2.7 Layout Analysis

By layout analysis we mean the process of uncovering the structure of a docu-
ment based on layout cues. Most work in this field relies on documents whose
format is known, very different to what we assume. The generic approaches
we present here are more relevant in the context of partially structured doc-
uments with unknown structure, and hence to our purpose.

One motivation to layout analysis is to convert printed collections of doc-
uments into their corresponding tagged electronic version. Autotag [152] is an
early layout analysis system that aims at processing many types of documents
based mainly on heuristic rules. It performs a physical followed by a logical
analysis. The intention is “to capture every conceivable object that may add
to a document’s presentation”. However, it does not go as far as to capture
the semantic content of the documents.

Finding the logical structure of a document without knowing the actual
documents or styles used in them is the focus of Summers’ work [150]. Her
approach follows a two-step process: segmentation and classification. Segmen-
tation primarily uses layout, contour and font shape information. The classifi-
cation step compares the text segments with predefined structure prototypes,
mainly by means of geometric cues. The only linguistic knowledge used in
the described prototypes is the identification of typically appearing or non-
appearing symbols. If some information about the style of the documents is
known, then this can be incorporated in the processing steps as well.

Layout analysis is another research area where the development of the Web
triggered a demand for more sophisticated methods to understand the struc-
ture of a document. One motivation is to find out how important individual
segments of a Web page are. This is the starting point for Song et al. for ex-
ample [144]. Their algorithm first segments a Web page using HTML tags and
layout features such as font, colour and size. In a second step these segments
are arranged according to their importance. Machine learning techniques are
used to train the algorithm.

Other layout analysis work is much more specific about the type of struc-
tures to be detected and extracted, and resembles more an information extrac-
tion task than anything else. However, there seems to be a lot of potential in
exploiting more layout structure. Henzinger et al. believe “that the exploita-
tion of layout information can lead to direct and dramatic improvement in
web search results” [65].

2.8 Web Search Studies

Now that we have reviewed the literature that focuses on the data analysis
and acquisition process (and compared it to our methodology) we can move
on to discuss approaches for assisting users in the actual search process.

2 Related Work 37

Web search as such is obviously closely related to the overall focus of
this book. Some Web search techniques have been discussed in the context
of indexing the data sources and acquiring knowledge from those sources.
These processes do not usually involve the user but are often performed offline
before the user can actually start searching the document collection. In this
section we are more interested in all those aspects that are important for the
actual interaction between user and system although it is sometimes difficult
to separate these issues.

We shall first look at some motivating investigations concerning the users’
behaviour when searching the Web. The most comprehensive study of Web
queries so far was conducted by Silverstein et al. [138]. An evaluation of a
large log file of nearly a billion queries submitted to the AltaVista search
engine in a period of 43 days comes to a number of interesting conclusions.
First of all, queries are normally very short. The average length of a user
query is 2.35 words (similar results are reported in an earlier but smaller
evaluation of queries submitted to Excite [73] and in a more recent study of
queries submitted to America Online [14]). That means queries on the Web
are shorter than in more traditional information retrieval systems. Secondly,
the 25 most common queries account for 1.5% of all queries, even though
they are only a small fraction of all unique queries. The query “sex” is by
far the most frequent one. As the third interesting result it was found that
“surprisingly, for 85% of the queries only the first result screen is viewed, and
77% of the sessions only contain 1 query, i.e. the queries were not modified in
these sessions”.

There are at least two lessons to be learnt from this work. First of all, user
queries are generally very short which will naturally lead to a large number of
documents being returned. But the second aspect is that the majority of users
did not perform any query modifications. A system which applies a model of
the domain to propose possible query refinements must perform extremely
well to be accepted by the user.

Furthermore, a number of studies have been conducted to find out whether
the search process could benefit from offering potentially relevant terms to the
user in an interactive query expansion process (this is different from automatic
query expansion where the user does not get directly involved in the selection
of query modification terms, e.g. [123]). In one of these studies by Margennis
and van Rijsbergen potential expansion terms are automatically derived from
the documents retrieved by the original query [107]. The underlying assump-
tion reads as follows:

“It seems reasonable to assume that a searcher, given a list of the
query expansion terms, will be able to distinguish the good terms
from the bad terms.”

It was found that interactive query expansion performed by an experienced
user has a potential to significantly improve the search process. However, they
also found that inexperienced users did not make good term selections and

38 INTELLIGENT DOCUMENT RETRIEVAL

hence interactive query expansion led to no improvement in the search process.
Margennis and van Rijsbergen conclude:

“Without good strategies and careful reasoning it is unlikely that a
searcher will be able to use techniques such as interactive query ex-
pansion effectively”.

Interestingly, Anick found that even if the search engine presents the user
with query modification suggestions (in this case via AltaVista’s Prisma tool),
then the vast majority of reformulations are still done manually [7]. However,
he also found evidence that a subset of those users presented with query
modification terms did make effective use of it on a continuing basis.

Query modification suggestions are by no means restricted to text-based
retrieval systems. Image retrieval, for example, may also benefit from present-
ing representations of images returned from an initial query to help refining
the search as suggested by the Blobworld framework [25]. However, we will not
elaborate on this since our research interest is primarily in text documents.

An interesting evaluation of different types of Web search has shown that
some guidance to help the user in reformulating a query can significantly
improve the relevance of the retrieved documents compared to standard Web
search [22]. Part of the study was the comparison of Web search using Google
and a search via the Hyperindex Browser, an interactive tool which passes the
user query to a search engine and displays a list of linguistic phrases found
in the top matching documents returned by the search engine. Those phrases
can be selected by the user to constrain the query.

Recent experiments that have been conducted as part of the TREC in-
teractive track have shown that hierarchical clustering and summarization
can significantly help the user to locate relevant documents quickly. The ex-
perimental search system called HuddleSearch uses a hierarchical clustering
algorithm which dynamically organises a set of retrieved documents for a user
query. Uncompleted tasks and average time to finish a search task were re-
duced by the use of HuddleSearch compared to a standard list-based search
engine [116].

Finally, we want to point out that most research into hypertext search
technologies concentrates on internet (Web) search, but very little has been
reported on search in intranets. For a number of reasons intranet search is very
different from internet search. Standard ranking functions such as PageRank
and HITS that work well for Web collections tend to be less effective for
intranets [48]. Furthermore, one can expect very little spam in intranets com-
pared to the Web in general.

2.9 Navigating Concept Hierarchies

As discussed earlier, one can tackle the problem of matching the user’s in-
formation need against the available data by processing the data into some

2 Related Work 39

conceptual model that can be used as a tool for guiding the user to a small
set of relevant matches. The model can either be constructed offline or online
by investigating the documents retrieved for the initial query. The system can
then apply the model to help the user navigate through the answer set. There
are at least two good reasons for this. First, the user gets a feel for what
data is actually available. Rather than guessing new query terms, the system
presents the query in context and proposes possible query refinement or relax-
ation terms. A second reason is to support a user who wants to browse rather
than search a document collection, because “current search mechanisms are
not much use if you are not looking for a specific piece of information, but are
generally exploring the collection.” [119].

Research on the construction of concept (or term) hierarchies has so far
focussed mainly on word co-occurrences or linguistic information. None of the
approaches we will discuss uses the actual document markup structure.

The motivation for the work by Sanderson and Croft [134] is to automat-
ically organize documents in a conceptual structure based on keywords found
in the documents. Unlike in manually constructed subject hierarchies, this
structure is customized to the set of documents. The presented solution is
a hierarchical organization of concepts automatically derived from a set of
retrieved documents. General concepts are placed in the higher levels of the
hierarchies, more specific ones further down. The construction is based on
pairs of terms occurring in the same document, independent of the context
they were found in. A concept x is considered more general than a concept
y, if the documents which y occurs in are a subset of documents containing
x. Experiments have been conducted comparing the use of these hierarchies
with simple list interfaces in interactive query expansion [74]. The results show
that users who applied the hierarchical representation completed the expan-
sion task in a significantly shorter time than users who were given a list of
expansion terms. However, no significant differences in terms of precision and
recall were found.

Closely related is the Paraphrase Search Assistant [9]. The focus is again
on how to help the user find the set of most relevant documents among a
large set of documents retrieved for a query. The user is presented a list of
relevant terms, each of which expands to a list of compounds (containing the
selected term) which can then be used to constrain the query. The assumption
is the “tendency for key domain concepts within result sets to participate in
families of semantically related lexical compounds”. An interesting aspect in
this context is that query logs have shown that users actually make use of the
presented terms for query refinement. A more detailed account of this work
can be found in Anick’s PhD thesis [8], where two systems are presented.
One of them, Paraphrase I, identifies a set of topics (II facets) by clustering
the document collection prior to query time. The second system, Paraphrase
II, constructs theII facets on the fly. In both cases the facets are then used to
expand them into sets of compounds.

40 INTELLIGENT DOCUMENT RETRIEVAL

The automatic construction of hierarchical information utilizing the dis-
tribution of features is discussed by Glover et al. [57]. Features are words or
phrases of length two or three. Based on a small set of sample Web pages,
the method finds parent, self and child features, where self terms are good
descriptors for a selected cluster of documents (e.g. “biology”), parent terms
describe more general (e.g. “science”) and child terms more specific concepts
(e.g. “botany”). Note that this method needs to have a set of positive exam-
ples in the first place. Based on that one can infer the structure by comparing
the distribution of terms in the positive examples with the distribution in the
entire collection.

A simple algorithm to construct graph models of related words is intro-
duced by Widdows and Dorow [167]. The method can be used for “assembling
semantic knowledge for any domain or application” and is based on grammat-
ical relationships such as co-occurrence of nouns or noun phrases and needs
only a corpus tagged for part-of-speech. The underlying motivation is similar
to what this book is about: to uncover semantic relations by looking at the
actual data, in other words “to observe word meanings with no prior agenda:
to hear the corpus speak with its own voice” [166].

Another linguistically motivated approach has been suggested by Payn-
ter et al. [119]. A phrase hierarchy is automatically constructed to facilitate
browsing of a Web site. Noun phrases are extracted from the document col-
lection and organized in hierarchies of phrases. The further down one goes in
these hierarchies, the longer the phrases are. Hence, a user can start exploring
the collection by searching for forest, then select forest products, from there
go to wood forest products etc.

A technical evaluation of different techniques for automatically building
concept hierarchies was performed by Lawrie and Croft [98]. Basically, the
work compares the lexical modification approach [9] and the subsumption
technique [134] to build hierarchies that can be used for browsing document
collections. The findings are that the strength of the subsumption approach
is to separate documents into small groups; lexical hierarchies on the other
hand do a better job of including all documents in the hierarchy. Another
interesting aspect of the presented results is that clustering was found to im-
prove the results. The original document set is clustered, and hierarchies are
built for each cluster separately. The resulting concept hierarchies contain
more relations than single hierarchies and have a shorter average path length.
The method of clustering was found to have little effect on the quality of the
resulting hierarchies.

Finally, there has been work on the “description of a linguistically moti-
vated method for identifying and browsing index terms and establishment of
fundamental criteria for measuring the usability of terms in phrase browse
applications” [157]. Documents are indexed by a system called LinkIT which
parses the text, identifies noun phrases and ranks them according to their fre-
quency. The assumption is that the “distinction between phrasal heads (the
most important words in a coherent term) and modifiers serves as a basis for

2 Related Work 41

the hierarchical organization of terms.” It was found that the vast majority
of heads have two or fewer different possible expansions. For those heads a
hierarchical index would be created and displayed on user request. The con-
clusion is that the linguistically motivated structure of index terms helps the
user to efficiently browse and disambiguate terms.

2.10 Dialogue Systems

Dialogue systems are a research area that attracts a number of quite different
communities. Since we are interested in some fairly specific type of dialogue
systems, namely those that can be summarized as information seeking sys-
tems, we will concentrate on related work in this area. That means that we
will not discuss systems such as Verbmobil [158], a speech-to-speech transla-
tion system where the dialogue system mediates between two human users.
Nor will we discuss dialogue approaches that try to model psychologically
motivated ideas. We will focus on practical approaches involving systems that
assist a user in accomplishing some search task in the widest sense.

The DARPA Communicator project aims at rapid development of multi-
modal speech-enabled dialogue systems [159]. It follows a schema-based ap-
proach. Schemas describe major information units. The domain is travel
itineraries. This is very different from just searching for documents. The two
main activities in creating an itinerary are the composition of an itinerary
structure and the population of this structure. One of a number of example
implementations is CMU’s Communicator system [130]. Rather than following
a strictly system initiated dialogue it uses a mixed initiative approach giving
the user more freedom. This decision was based on the experience “that users
generally dislike the rigid policy”. An agenda keeps track of what tasks still
need to be fulfilled (i.e. what information needs to be collected from the user).
The complex data structure, the product, that needs to be filled with infor-
mation, has handlers attached to it that encapsulate knowledge necessary for
interacting about a specific information slot [162].

The EU funded Task Oriented Instructional Dialogue (TRINDI) project
addressed central issues in designing dialogue systems that could be used for
interaction between humans and computers. Key aspects of this research con-
cern the representation of information states and information about how the
system would move between dialogue states. A toolkit (TrindiKit) has been
constructed that serves as a framework for the experimentation with different
theories and applications [95]. However, we will introduce a much simpler rep-
resentation of dialogue since that seems to be sufficient for applications such
as ad hoc search.

A large number of dialogue systems is concerned with time and schedule
information, such as OVIS [115], the Philips train timetable system [11], Sun-
dial [120, 108], TRAINS [5]. These are heavily restricted domains, in terms
of size and complexity of data. In addition, there are some systems which

42 INTELLIGENT DOCUMENT RETRIEVAL

retrieve addresses from Yellow Pages, e.g. Voyager (and its sibling, Galaxy,
which the Communicator framework is based on) [174, 173].

HappyAssistant is a natural language navigation system that helps a user
find relevant information about products and services on an e-commerce Web
site [27]. A dialogue is initiated by matching concepts from the user query
to “business rules”. The system initiated interactions allow to collect more
information about the user needs until the system can recommend an item
or until all possible items have been eliminated. This system served as a
prototype for the Natural Language Assistant (NLA) [26]. However, both these
systems access a well structured product database.

All the above-mentioned systems involve the filling of some information
slots and then reacting appropriately to the set of filled slots.

Finally, information assistants have also been built mainly based on ma-
chine learning ideas. As mentioned before, the machine learning community
has an interest in understanding documents to automate the extraction of
information from documents like Web pages by means of wrappers. Wrap-
pers can be used to extract information in real time. Examples of information
assistants based on this idea are the Travel Assistant and the WorldInfo As-
sistant which interact with a user by collecting values to fill slots [83, 84].
Groups of slots are organized in templates and arranged hierarchically into
templates and subtemplates. Constraints define how particular types of infor-
mation are related. The actual results (i.e. travel itineraries or geographical
information about particular regions) are collected from a variety of Web
pages using wrappers. This is very different to what is described in this book.
The emphasis is much more on the planning part.

2.11 Usability Issues

It is worth reviewing some more work on usability issues in the widest sense.
A number of studies (ranging from preliminary investigations to some larger
scale studies) have come to conclusions that are relevant here.

The work on the HappyAssistant dialogue system included user studies
which showed that the number of clicks as well as the time spent on search-
ing could be reduced significantly by replacing a menu driven system with
natural language navigation [27]. Interestingly, “the vast majority of user
queries (85%) were relatively short, and consisted of noun phrases or lists
of keywords”. The conclusion is that “in such contexts, sophisticated dialog
management is more important than the ability to handle complex natural
language sentences”. Studies have also shown that the users clearly prefered
dialogue-based to non-dialogue-based searches [26].

A comparison of interactive search in a homogeneous domain using a
keyword-based search engine and one that uses an ontology is reported by
Sutcliffe and White [151]. For the ontology-based system the documents were
attached to the appropriate nodes in the ontology. The search started at the

2 Related Work 43

top level, proceeding step by step to the levels beneath. The application do-
main was word processing using the Lotus Ami Pro program. The result of
the study was that the keyword-based system performed better than the one
using the ontology. However, more interesting are the conclusions drawn from
the study. One of them was that “if an ontology search does not lead directly
to a correct answer it is essentially a complete failure”, unlike keyword-based
search. The characteristics that were identified to be important when using
some taxonomy to search were:

• It must be possible to decide easily which category at a level is relevant
to the query;

• Categories should ideally be mutually exclusive;
• The level of branching at any level must be limited;
• The number of documents attached to leaf nodes must be small.

Observational experiments conducted in the TREC interactive track fo-
cused on finding out whether users choose a particular presentation type for
a particular search task [38]. The different types of presentations were ranked
document lists, a clustering interface and an integrated interface combining
ranked lists, clusters and expert links. The tasks were searches for single doc-
uments or sets of documents, respectively. It was concluded that users did not
select a particular interface for a particular search task nor was any of the
presentation types found to be superior for any particular task.

One may of course address the question of how a search engine should
interact with the user very differently. Understanding the underlying informa-
tion need of the user may lead to different system architectures for different
tasks. Broder distinguishes three different classes of Web queries: navigational
(aimed at finding a particular site), informational (to find information about
a topic), and transactional (aimed at web-mediated activity such as online
shopping) [21]. A study of queries submitted to AltaVista revealed that less
than half of all queries are in fact informational queries. Another study (also
investigating AltaVista queries) found that about 60% of user queries were in-
formational and only 15% navigational, in other words “so-called navigational
queries appear to be much less prevalent than generally believed” [128]. Such
findings will influence the design of future search engines and they are also
closely related to human computer interaction issues. The large field of human
computer interaction shall however not be discussed in detail here. A com-
prehensive overview of related work and the problems involved can be found
in the chapter User Interfaces and Visualization in the excellent text book
Modern Information Retrieval by Baeza-Yates and Ribeiro-Neto [12].

2.12 Concluding Remarks on Related Work

To conclude this chapter, we found that techniques for the automatic extrac-
tion of knowledge typically rely on particular assumptions about the structure,

44 INTELLIGENT DOCUMENT RETRIEVAL

the language or the type of documents in the collection. There has so far been
no attempt to simply use the markup structure to construct a domain model
for a document collection. To do this we will need to make minimal assump-
tions about the documents in the collection. Our approach does however share
ideas with some of the related work presented here. Furthermore, the use of a
simple dialogue system to assist a user in ad hoc search appears to have the
potential of helping a user to find documents more easily.

3

Data Analysis and Domain Model Construction

This chapter will address the data analysis and model construction issues in
more detail. We will define concepts and relations between them. We will then
discuss how the selected concepts can be arranged to obtain a model that is
comparable to a classification hierarchy. The result will be our domain model.

3.1 Documents

Our primary aim is to assist users in the search process. So, we assume there is
a collection of items which is mainly based on natural language text but could
as well contain other elements like graphics or hyperlinks. We will call those
items documents. Documents could be raw text, marked up text, articles etc.
This loose characterization of a document allows us to treat advertisements
in a classified directory as documents while in a different domain documents
might be Web pages or news stories. We will also assume that a document
contains words. These words are sequences of non-white characters separated
by white space, i.e. words do not have to be lexical entries. We will refer to
a subdocument as any coherent part of a document, be it words, phrases or
whole paragraphs. From now on we will write doc(d) as a short form to express
that d is a document in our collection. If not otherwise specified, then this
collection will be refered to as D. In other words the definitions in this chapter
are to be applied relative to a fixed set D of documents.

The data sources of interest are partially structured, that means the doc-
uments do have some structure as illustrated in Chap. 1. We talk about data
sources here because in addition to the documents there might be some ex-
plicit structure already present within the documents. That could be the or-
ganisation of documents in a file structure or some explicit classification of
documents, both of which are not necessarily part of the documents them-
selves.

The document structure can come in a variety of forms; we are interested
in what can be abstracted as some sort of markup context. Informally speak-

46 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 3.1. Example Web page

ing, this is an explicit convention of highlighting or marking up a part of a
document in a particular way distinguishing it from other parts. For example,
in this book a chapter or a section title can easily be identified by the font
size and type of the text (i.e. their markup context).

We write markup(m, d) to express that m is a markup context for docu-
ment d. We also define markup(w, m, d) to express that a word (or a phrase)
w in document d is found in markup context m. Furthermore, we will write
{m|markup(w, m, d)} to describe the set of markup contexts word w occurs
in (in document d).

For hypertext documents such as the one displayed in Fig. 3.1 the different
markup contexts to be considered would be defined by various kinds of tags
that are used to mark parts of the text as heading, title, anchor text, normal
text etc. whereas a collection of newspaper articles might distinguish font size,

3 Data Analysis and Domain Model Construction 47

shape, possibly a number of colours as markup contexts. This also implies a
particular part in the document can be part of different markup contexts at
the same time. For example, in this section of the book we might distinguish
three markup contexts: the default font, bold and italic types.

Suppose, there is an indexing process, that is a function on subdocuments
of document d to a set of index terms. Then we will write index(t, d) to express
that t was selected as an index term (or simply index) for document d in this
process.

A standard IR indexing technique might select all content-bearing words
and phrases and write stemmed word forms as an index into a database. In
the applications that we will discuss later on we will index nouns and certain
noun phrases.

Throughout the book we represent index terms consisting of more than
one word as words connected by an underscore, e.g. trade union or depart-
ment of industry.

3.2 Concepts

Definition 3.1. An index term c is a concept term (or simply concept) of type
n for document d, written as conceptn(c, d), if c occurs in at least n different
markup contexts in d, i.e.:

conceptn(c, d) ⇔ (
index(c, d) ∧ ∣

∣
∣∣{m|markup(c, m, d)}∣∣∣∣ ≥ n

)
(3.1)

In addition, we define:

concept(c, d) ⇔ (conceptn(c, d) ∧ n ≥ 2) (3.2)

conceptn(c) ⇔ (∃d index(c, d) ∧ ∣
∣
∣∣{m|markup(c, m, d)}∣∣∣∣ ≥ n

)
(3.3)

We will say that c is a concept of type n (or type-n concept) when we
refer to the definition above (i.e. conceptn(c)). Analogously, we will refer to
c as being a concept if we want to express the fact specified by the following
definition (i.e. concept(c)):

concept(c) ⇔ (∃d index(c, d) ∧ ∣
∣
∣∣{m|markup(c, m, d)}∣∣∣∣ ≥ 2

)
(3.4)

Why do we use n ≥ 2? We do not want to rely on a particular markup
context. So we only want to consider those terms to be concepts that occur
in more than one markup context. However, if the document collection is big
enough we may as well only be interested in concepts that are found in more

48 INTELLIGENT DOCUMENT RETRIEVAL

than two or three markup contexts. We just want to specify that anything
that can only be found in one of these contexts in a document will not be
considered a concept.

We indicated earlier, that a single occurrence of a term may be found
in more than one markup context. It could be that two markup contexts
overlap. In this sense, the last definitions do not imply that there need to be
two instances of a term in a document in order to be considered a concept of
type 2.

As an example for the definition of a concept consider the three words
“markup”, “hyperlinks” and “specified” in Sect. 3.1. If one distinguishes text
in the default font, bold and italic types as the (three) different markup con-
texts and selects all the nouns as index terms, then the only one of the three
words which would be considered a concept is “markup”. The term “specified”
is not an index term (because it is not a noun), and the word “hyperlinks”
can only be found in one markup context (the default font). To show that
a single instance of a word can be found in more than one markup context
one could introduce an additional markup context, which is everything that
is marked as a mathematical formula. Applied to the current section the term
“markup” can then be found in the new context and in italics simultaneously.

Figure 3.2 indicates why we would consider the two terms “MSc” and
“NLE” to be concepts for the document introduced in Fig. 3.1: “MSc” can
be found in the title as well as one of the headings, “NLE” turns up in some
anchor text as well as a heading. In fact, both terms can also be found in the
normal text of the document which makes them concepts of type 3.

Applying the above definitions, we can now reduce documents to a small
number of concepts. We might find a handful of concepts in a particular
document or not a single one. We will need little more to construct a domain
model. The only other assumption that we will make is that if we find a
particular concept in a document and this document happens to contain some
other concept as well, then we will want to capture this fact by saying that
these two concepts must be “somehow” related. It should be reiterated that
this is by no means an attempt to uncover the type of relation between two
concepts. Whether the relation is useful or not will ultimately be decided
by the user who applies the domain model. More specifically, in an ad hoc
search system a user may either select a query refinement term proposed by
the system or ignore it. We do not want to know why the user selects such
a term as long as the suggestions are considered sensible by the user. Hence,
our definition of related concepts is straightforward:

Definition 3.2. Two concepts c1 and c2 are related concepts of type n for
document d, written as rel conceptsn(c1, c2, d), if c1 and c2 are concepts of
type n for document d, i.e.:

rel conceptsn(c1, c2, d) ⇔ (conceptn(c1, d) ∧ conceptn(c2, d)) (3.5)

3 Data Analysis and Domain Model Construction 49

Fig. 3.2. Example concepts in a Web page

We also define:

rel conceptsn(c1, c2) ⇔ (∃d rel conceptsn(c1, c2, d)) (3.6)

rel concepts(c1, c2, d) ⇔ (rel conceptsn(c1, c2, d) ∧ n ≥ 2) (3.7)

rel concepts(c1, c2) ⇔ (∃d rel concepts(c1, c2, d)) (3.8)

Hence, the two concepts we identified in Fig. 3.2 are in fact related concepts
because they were found in the same document.

50 INTELLIGENT DOCUMENT RETRIEVAL

The related concepts relations in (3.5) and (3.7) obviously describe equiv-
alence relations over the domain of index terms and fixed values for type (in
(3.5)) and document.

However, this is not true for the relations defined in (3.6) and (3.8).
Counter examples can easily be constructed. For example, we can have one
document about the students union and another one about the trade union.
The term union may be a concept for both documents. However, each of the
two documents may define a number of other concepts that can only be found
in one of the documents (e.g. bar, entertainment vs. representative, trade).
Hence, concepts bar and union are related concepts, so are representative and
union, but bar and representative are not.

The last example gives a motivation for the next definition. We define
a new relation of vaguely related concepts for pairs of concepts that are not
related, but which share some other concept that is related to each of them.
Why do we want to capture such a relation? It introduces an interesting aspect
(discussed below) that allows us to construct a usable domain model later on.

Definition 3.3. Two concepts c1 and c2 are vaguely related concepts
of type n, written as vague rel conceptsn(c1, c2), if there is a concept
c3, such that rel conceptsn(c1, c3) and rel conceptsn(c2, c3) hold, but not
rel conceptsn(c1, c2), i.e.:

vague rel conceptsn(c1, c2) ⇔ (∃c3 rel conceptsn(c1, c3)
∧ rel conceptsn(c2, c3)
∧ ¬rel conceptsn(c1, c2))

(3.9)

In addition, we define:

vague rel concepts(c1, c2) ⇔ (vague rel conceptsn(c1, c2) ∧ n ≥ 2) (3.10)

To emphasize the significance of such a relation we will consult another
actual example. Processing the Essex University Web pages reveals that there
is a concept isabelle which has among others the related concepts proof,ff theo-
rem prover and theorem. A second set of related concepts in the same domain
is art history, gallery and undergraduate studies. Both of these sets are good
illustrations of the intuitive meaning of what a related concept is. A search
for either isabelle or art history on the University Web site results in a large
number of matching Web pages. But this is where the two sets of concepts
differ: a query refinement step that adds the related terms for isabelle to the
query results in exactly the same set of retrieved documents, because any doc-
ument that contains the term isabelle contains terms such as theorem prover
as well. In contrast to this, documents containing art history do not neces-
sarily contain the term undergraduate studies. Any of the concepts related

3 Data Analysis and Domain Model Construction 51

to art history mentioned above can only be found in a subset of documents
matching art history. In other words, a query refinement operation that adds
the concepts related to art history is truly reducing the set of retrieved Web
pages. The reason is, unlike the first set, the second one contains vaguely
related concepts.

In the next sections we will discuss the domain model construction process.
We will then see that sets of concepts such as isabelle and theorem prover
will end up in the same node of a concept hierarchy while concepts such as
art history, gallery and undergraduate studies are the ones that are actually
useful for query refinement, and they will be placed in different nodes of a con-
cept hierarchy. Although we will not make an explicit reference to the above
definition (because the model construction process does not refer explicitly to
such a relation), it should become clear that we will get concept hierarchies
in which the concept in the root node is related to each of the concepts in the
hierarchy, but when looking at concepts selected from any two sister nodes
we may well find these to be vaguely related concepts.

3.3 A Domain Model Based on Concepts

In the introduction we outlined the motivation for constructing a domain
model. We also sketched the actual model acquisition process. In fact, we pre-
sented a slightly simplified approach. Here we will quickly revise this process
and then give a formal account of the model and its construction.

Simply speaking, we constructed a domain model that was a set of concept
hierarchies. Each of those hierarchies consisted of nodes represented by single
concepts (see for example Fig. 3.3 which is identical to Fig. 1.6). A node
was created if there were documents in the collection that matched the query
represented by the particular node. Remember that what we call queries are
actually just “potential” queries. We assume that the concepts that have been
found in the indexing process are likely to be among those terms that users
submit as real queries when they search the document collection. Based on this
assumption we can simulate a user request by starting with a single concept
as a possible user query (this will be the root node of one hierarchy). Utilizing
the relations detected in the source data one can then explore all possible
ways of constraining this query by adding a single concept to the query in a
query modification step (these concepts will each end up in a daughter node
of the root node). The interesting terms that could be added to the query in
such a step are all the concepts that were found to be related to the original
query (i.e. concept). This is an iterative process that can be applied to the
new queries until eventually we reach the leaf nodes, i.e. nodes that typically
represent very specific queries for which only small sets of documents can be
found.

However, the original idea of creating nodes for single concepts can be
improved, mainly because such a domain model would grow too large (in

52 INTELLIGENT DOCUMENT RETRIEVAL

course_material

research_interest

study_scheme

essex_graduate

volume

language_paper

student_paper

efl

language_department

graduate_student

language_learning

...

language_linguistics

Fig. 3.3. Concept tree for the compound language linguistics

particular the branching factor at each level in the hierarchy could be very
high). That is not the only problem, because one could constrain the breadth
of the model by reducing the number of branches that leave a node based on
some ranking function. But we also construct a large number of nodes that
should be merged to form a single node because they do not really represent
different queries.

For an intuitive explanation of this we look again at Fig. 3.3. We assume
this model has been constructed in an offline process as outlined earlier. It
is now used to guide a user through a search task. The user asked for “lan-
guage and linguistics” and the system offers a choice of three related terms
that could function as query refinement options: efl, language department and
graduate student. Imagine the user selects the last one in the list and is now
presented with four new terms (essex graduate, ...), each of which could again
function as a refinement term (refining the query that now consists of the
original terms and the term graduate student). Why is this not good enough?
The somehow peculiar relations between concepts graduate student, volume,
language paper etc. were actually extracted from a collection of documents all
entitled “Graduate Students Papers in Language and Linguistics, Volume ...”.
No matter which one of the suggested terms is added to the current query,
the set of matching documents will be the same. This means the user does
not really have a choice between alternative ways of getting to more specific
matches. Since all those concepts frequently co-occur in the same documents
we can treat them as a set of concepts rather than individually.

3 Data Analysis and Domain Model Construction 53

Hence, the definition of a domain model hierarchy that we will introduce
in this chapter is slightly different from the one depicted in the introductory
example, namely nodes are sets of concepts rather than single concepts. A
query refinement step could now involve adding a whole set of concepts to the
original query. Alternatively, the fact that a number of concepts are placed
in the same node can help the users (who search or browse the document
collections) obtaining an idea of what sort of documents to expect.

We will therefore refine the domain model construction process. We start
by defining the necessary structures and terminology, and then move on to the
actual model construction. Once we have introduced the model construction
process, we will return to the example and see how the revised hierarchy looks
like.

3.4 Model Structure

The basic building blocks of our domain model are concepts, nodes and arcs
which are connected in a tree structure. In the definitions we refer to terms
defined in the previous sections. As with the definition of concepts, we distin-
guish different types of domain models based on the type of the underlying
concepts. That means that a domain model of type 2 contains only concepts of
type 2 etc. We will start by defining the nodes that will represent the concepts
in our domain model.

Definition 3.4 (Node). A domain model node of type n, written as noden(a),
is a set of concepts of type n, i.e.:

noden(a) ⇔ ∀c ∈ a conceptn(c) (3.11)

We will use the terms domain model node and node synonymously. We
write node(a) if noden(a) ∧ n ≥ 2.

Conceptually, the nodes are somehow comparable to sets of synonyms
(synsets in WordNet), except that the concepts forming a node do not de-
scribe a linguistic relation (i.e. synonymy). A node contains related concepts
that typically co-occur in a document (cf. the discussion in the previous sec-
tion and the earlier isabelle example that followed Definition 3.3). Synonyms
are typically good candidates for query expansion in information retrieval ap-
plications. A user query “taxi” could thus be expanded to a query like “taxi
OR cab OR taxicab” to match a larger set of documents. Analogously, we
could use the concepts in a node to perform query modifications. However,
we would use the terms for query refinement rather than query expansion. To
refer again to the earlier example we would turn a query that contains the
term “isabelle” into one that contains “isabelle AND theorem prover AND
theorem AND proof”.

54 INTELLIGENT DOCUMENT RETRIEVAL

Domain model nodes are the main building blocks for the structures we
are actually after - concept hierarchies.

Definition 3.5 (Concept Hierarchy). A concept hierarchy of type n is a
tree consisting of domain model nodes of type n connected by weighted directed
arcs.

The direction of the arcs is such that all arcs point towards the leaves of
the tree. A concept hierarchy is therefore an acyclic directed graph. We will
ignore the weights for now. The reason we introduce them is to capture the
fact that not all arcs are of equal importance. The weights assigned to the
arcs are applied to present query modification options in a ranked order.

We will write hiern(h) to express that h is a concept hierarchy of type n.
We write hier(h) if hiern(h) ∧ n ≥ 2.

A hierarchy is built for every single concept identified in the indexing
process; in other words, for every concept there is a hierarchy with this concept
in the root node. The set of all these hierarchies will be called domain model.

Definition 3.6 (Domain Model). A domain model M of type n is a set of
concept hierarchies of type n.

We will also define an intuitive notation of a path within a hierarchy. We
will need this in order to propose strategies for applying the domain model.

Definition 3.7 (Path). Let a1 and a2 be two nodes in a concept hierarchy
h. There is a path from a1 to a2, if a2 can be reached by traversing h starting
at a1 following the direction of the arcs.

The notation to express that there is a path from node a1 to node a2 in a
concept hierarchy h will be path(a1, a2, h).

Finally, we will define the depth of a hierarchy as the maximum length of
a path from the root node to any leave node in this hierarchy. The length of
a path is the number of arcs traversed.

3.5 Model Construction

After introducing the necessary elements of a domain model we can now de-
fine the domain model construction process. For simplicity, we use a (very
basic) Boolean approach to match documents against query terms, i.e. we
assume that a document matches a query term if an indexing process has
found the query term in the document. We consider every query to consist
of a conjunction of query terms. We will ignore disjunctions and negations
altogether.

First of all we assume a matching function which matches a set of concepts
to a set of documents, in other words a function that finds matching documents

3 Data Analysis and Domain Model Construction 55

for a query. This is needed, for example, to decide whether two queries retrieve
the same sets of documents.

It should be reiterated that the aim is to create nodes that contain sets of
concepts rather than single ones. Each node is a set of frequently co-occurring
concepts, and the idea is that such concepts do not really represent alternative
query expansion terms, but adding any of them will take the user to the same
set of documents. It should also be noted that the notion of frequently co-
occurring is context-dependent. What it really means is co-occurrence in doc-
uments that contain all the other query terms as well, i.e. every concept that
has been found on the path from the root node to the particular node of inter-
est. In the earlier example we outlined that a root node language linguistics
would now branch to a node containing concepts graduate student and vol-
ume among others. In some other context the concept volume would not be
grouped with graduate student; however all the documents that contain lan-
guage linguistics and graduate student happen to contain the index term vol-
ume as well (and all documents that match language linguistics and volume
also match graduate student).

The purpose of the matching function is to decide at each stage of the
model construction process whether a new node has to be created or whether
a concept can be placed in one of the already existing nodes (either a sister
node or a mother node). Essentially, a new node will only be created if it
represents a query that retrieves a document set which differs from what the
other queries in this branch retrieve.

Apart from the assumed matching function we also define an auxiliary
function that maps a node in a domain model to the corresponding query:

Definition 3.8 (Mapping a Node to a Query). Let n be a node in a
concept hierarchy h, and let p be the path from the root node r of h to n. We
define the query that corresponds to node n as the union of the concepts in all
nodes on path p.

Remember that a node is simply a set of concepts and that we assume a
Boolean model, i.e. a query is a set of conjoined query terms. The definition
of a concept hierarchy guarantees that the query that corresponds to a node
is uniquely defined. The Boolean model guarantees the same set of matches
independent of the order of the query terms.

We can now express the model construction process more formally. For
simplicity we will start by presenting an algorithm that leads to a model
where all nodes contain only a single concept (as we have seen in Fig. 3.3).
We will then specify two conditions under which new nodes are created. These
conditions prevent the generation of a number of nodes, namely those that
contain concepts which we want to collapse with nodes already present.

Naturally, this algorithm could be expressed in a number of ways. The con-
structive approach that we present here seems to be most intuitive. It follows
closely the actual implementation. This is the basic construction process:

56 INTELLIGENT DOCUMENT RETRIEVAL

{course_material}

{research_interest}

{study_scheme}

{efl}

{language_department}

{language_learning}

...

{graduate_student,

student_paper}
language_paper,
essex_graduate, volume,,

{language_linguistics}

Fig. 3.4. Revised concept tree for the compound language linguistics

For each concept c of type n for which a document d exists with
conceptn(c, d) we create a hierarchy h as follows:

1. Create a node noden({c}) that is the root node of h.
2. For each node noden(C ′) in h and each c′′ with rel conceptsn(c′, c′′)

for every c′ ∈ C ′ do: Create a node noden({c′′}) and a di-
rected arc from noden(C ′) to noden({c′′}) if the query q′′

that corresponds to the new node matches a non-empty
document set.

3. Perform step 2 until there are no unexplored nodes left.

Now we have to elaborate on step 2. In fact, before we create a new node
noden({c′′}) as outlined in step 2, we will first check two conditions, and if a
condition holds, we perform the corresponding action:

a) If query q′ that corresponds to noden(C ′) matches the same
document set as q′′, then add c′′ to the existing node noden(C ′),
and do not create noden({c′′}).

b) If a new node noden({c′′}) would have a sister node noden(C ′′),
and the queries that correspond to each of those two nodes
match the same set of documents, then add c′′ to noden(C ′′),
and do not create noden({c′′}).

A revised version of the hierarchy given in Fig. 3.3 can be seen in Fig. 3.4.
There are some interesting aspects related to the model construction

process that are worth noting here:

3 Data Analysis and Domain Model Construction 57

• Step 2(b) is responsible for merging two nodes that represent slightly differ-
ent queries which nevertheless match the same documents (cf. the example
in Fig. 3.4). Structurally step 2(b) is comparable to grouping synonyms as
synsets in WordNet’s hierarchies.

• Step 2(a) on the other hand is not quite the same. Although the queries
that correspond to the two nodes (mother and daughter node, respectively)
match the same documents as is the case in step 2(b), the daughter node
represents a query that contains more query terms than the mother node.
But these additional query terms could be very general terms that do
not constrain the original query at all. For example, adding a query term
union to the query “students union” will not change the set of matching
documents. Therefore we can consider the process in step 2(a) as one
that identifies a relationship that is somehow comparable to WordNet’s
hypernym links. What this means is that we may well add the term union
to a node that contains students union as long as we ensure that the added
concept is a “very general term” that does not constrain the query (the
construction process will most likely create an additional hierarchy where
we find union further up than students union which makes the comparison
with hypernyms more plausible). Adding these terms may make the model
easier to interpret. But if we are not interested in such a process, we will
just have to add another condition in step 2 that says that we only create
a new node if the corresponding query results in a smaller set of matching
documents (i.e. in the definition we would require that query q′′ matches
a subset of what is retrieved by query q′).

• Earlier on we defined vaguely related concepts (see Definition 3.3 in Sect.
3.2). In that context we introduced the concept isabelle together with its
related concepts. So assuming that we run the algorithm in the Essex
domain, we will construct one hierarchy that contains the concept isabelle
in the root node. The algorithm will make sure that this root node will
also contain theorem prover, proof etc. On the other hand, the algorithm
will also make sure that two vaguely related concepts will not be placed
in the same node.

• Finally, in the practical implementations discussed later we will modify
step 3 of the algorithm to perform step 2 until there are no unexplored
nodes left or until a branch has reached a maximum depth specified in the
setup.

Obviously, the constructive approach above can be described differently
with the same result. What is important to point out, however, is the fact
that the assumption of a Boolean model ensures that the resulting domain
model is uniquely defined by the relations among the concepts and does not
depend on the order in which concepts or related concepts are chosen in the
construction process.

Instead of the strict notations used above such as “non-empty set”, “ex-
actly the same matches” etc. one can also imagine thresholds that would be

58 INTELLIGENT DOCUMENT RETRIEVAL

customizable for each domain. For example, one might want to avoid building
nodes if the corresponding queries only match very few documents. Similarly
one can impose thresholds in each of the other steps.

Finally, the above construction process assumes a matching function. In
order to have a coherent framework that fits in with what was defined earlier,
we typically define a document to be a match for a query, if all the query
terms were found to be concepts (of the specified type) in the document. This
is stricter than just assuming that the document contains each of the query
terms as a keyword. This idea is in the very spirit of the book in the sense
that a possibly huge amount of data can be reduced to a much simpler set of
index tables.

In the model construction process we ignored the weights that are assigned
to each arc. These are again application-dependent parameters. The weights
express the discriminative power of a concept (or a set of concepts). These
weights can be assigned as part of the outlined construction process or in a
second phase of the construction of the domain model. For simplicity we can
see the model described above as one in which all arcs have been assigned the
same weight. In the UKSearch system we will assign the weights to reflect the
number of matches each daughter node represents.

Practically, one can construct a domain model for each type of concepts,
i.e. all concepts of type 2, 3, etc. The higher the number the more important
the concepts and relations between concepts. An example application might
distinguish two models, one based on type-2 concepts and the other one based
on type-3 concepts. The second one is obviously smaller than the first one,
since by definition any type-3 concept is also a type-2 concept. An online
search system that tries to help the user by offering query refinement choices
could first check the most important concepts, i.e. type-3 in our example. If
not successful, less important concepts are investigated.

Such an approach represents a simple back-off strategy comparable to the
ones involving n-grams in statistical language modelling [80]. For example, a
language model based on trigrams can be much more accurate and reliable
than one that uses bigrams, however data sparsity is one of the fundamental
problems in statistical NLP. The back-off strategy in this case would work as
follows: if the language model does not contain any counts for a particular
trigram, then one could back off to bigrams. We do the same: type-3 concepts
are considered more reliable but much more sparse than type-2 concepts. If
we cannot match the query terms against type-3 concepts we back off to lower
order concepts. We will discuss such a back-off approach when we introduce
the model construction process for the UKSearch system (Chap. 6).

3.6 Using the Model for Query Modification

We want to briefly introduce some more terminology that will indicate how we
apply the automatically created domain model. As a reminder, the constructed

3 Data Analysis and Domain Model Construction 59

hierarchies can be interpreted as query refinements: if a user starts with a
query that matches a concept in the root node of one of the hierarchies, then
we can interpret concepts in the daughter nodes as new query terms that -
added to the original query - will lead to more specific matches. In fact, we
could consider any concept placed in a node below the root node to be a term
that could refine the original query. This will be discussed in detail when we
introduce the applications. For now we will only define these relations.

Definition 3.9 (Potential Query Refinement Term (1)). Let h be a
concept hierarchy with root node root in a domain model M . A concept c2 is
a potential query refinement term for a concept c1 iff c1 ∈ root and there is a
node n such that c2 ∈ n and path(root, n, h).

Definition 3.10 (Potential Query Refinement Term (2)). Let h be a
concept hierarchy with root node root in a domain model M . A concept c2 is
a potential query refinement term for a set of concepts C1 iff there is a node
n with c2 ∈ n such that path(root, n, h) and for every c1 ∈ C1 there is a node
n1 on this path such that c1 ∈ n1, and there is a c ∈ C1 with c ∈ root.

Applied to the concept hierarchy in Fig. 3.4 we would consider any of
the terms sitting below the root node to be a potential query refinement
term for language linguistics. Hence, if a user submits the query “language
and linguistics”, our domain model would deliver a number of possible query
refinements. A ranking function would then select the most appropriate ones
(a point we will get back to when we talk about the dialogue system which
applies the domain model).

Similarly, we can interpret the model as a tool that can suggest ways of
making the query more general. We might want to create a new query by
substituting a concept in a root node for concepts found in its daughters
(given that these concepts formed the original query). A user could then be
suggested to replace the original query “efl in the language department” by
“language linguistics”.

Definition 3.11 (Potential Query Relaxation Term (1)). A concept c1

is a potential query relaxation term for a concept c2 iff there is a concept
hierarchy so that c2 is a potential query refinement term for c1.

Definition 3.12 (Potential Query Relaxation Term (2)). A concept c1

is a potential query relaxation term for a set of concepts C2CC iff there is a
concept hierarchy so that each c2 ∈ C2CC is a potential query refinement term
for c1.

All four definitions express formally what sort of concepts we want to
consider to be refinement or relaxation terms. The dialogue manager will
need to compare the user query with the hierarchies in the domain model
and find out which concepts are useful suggestions for query modifications.
The focus will be on potential query refinement terms and potential query
relaxation terms.

60 INTELLIGENT DOCUMENT RETRIEVAL

3.7 Implementational Issues

Implementational details will be discussed in later chapters. However, for all
the example applications that have been implemented and which access doc-
uments mainly written in English we have adopted some standard techniques
for selecting potential conceptual terms in the first place. These are the only
language-dependent parts. The steps are as follows:

• The documents are preprocessed into some standard format. That includes
the deletion of control characters, a preprocessing step for the part-of-
speech tagger etc.

• All text independent of the markup context is passed to a part-of-speech
tagger that assigns a syntactic category to each word. The Brill tagger has
been used for this purpose [18, 19].

• Not all words are selected as index terms. We only use those words that
were tagged as nouns and furthermore select a number of noun phrases
(the idea is to use patterns that are suitable to identify collocations in
documents). We consider nouns and noun phrases to be the most useful
phrases for retrieval tasks. For the detection of noun phrases we look for
particular patterns, i.e. sequences of part-of-speech tags based on the al-
gorithm for the detection of terminological terms described in [76]. This
algorithm identifies technical terms in running text. It is effective both in
terms of precision and recall regardless of the domain. The underlying ob-
servation is that most topically important terms in running text are noun
phrases that follow very simple patterns consisting of nouns, adjectives
and prepositions only.
Patterns of length two and three form the vast majority of terminological
terms according to [76]. There are two admissible patterns of length two
and five of length three as can be seen in Table 3.1 (where A is an adjective,
P is a preposition and N is a noun). The examples are drawn from the
University of Essex sample domain and converted into a normalized form.

Table 3.1. Index terms: part-of-speech patterns

Pattern Examples

A N artificial intelligence

N N computer science

A A N human red blood

A N N electronic systems engineering

N A N research active staff

N N N ieee computer society

N P N department of history

3 Data Analysis and Domain Model Construction 61

For our implementations we adopted these patterns with slight variations
(for example to accommodate for part-of-speech tags such as FW (foreign
word) found in the Penn Treebank tag set [135] which we treat as either
an adjective or a noun). We make no distinction between proper nouns and
ordinary nouns.

It should be noted, however, that the indexing strategy outlined here has
its shortcomings. If we only index on nouns and particular compounds, we will
have problems with matching queries like “Pretty” (a member of academic
staff at Essex University which the tagger is likely to tag as an adjective)
or travelling to university (if we apply no stemming we are unlikely to find
a match for travelling because it will be tagged as a verb). But note also
that this only means that we ignore some terms or phrases that could be
interesting in the domain model construction process. A user query such as
“Pretty” can still be dealt with: The domain model is typically combined with
a standard search engine, and the query refinement options derived from the
domain model are presented alongside the results returned from the search
engine. In this particular case there are simply no refinement options; the user
will only see the search engine results.

Furthermore, the above patterns do not include compounds longer than
three words such as former Yugoslav president Slobodan Milosevic. Here we do
not consider longer patterns purely due to memory restrictions in our existing
system environment.

4

Incorporating Additional Knowledge

Apart from the basic markup of the documents, other knowledge may be
available. Some of this knowledge can be incorporated in the domain model
construction process, and other sources may be used by the dialogue system
in a similar fashion as a domain model.

What we did earlier in the domain model construction process was to
impose a classification structure on a collection of partially structured doc-
uments, a structure that already exists in sources like classified directories.
This is where the original idea for the domain model comes from.

4.1 Internal Knowledge

While it is very interesting to uncover implicit structure, it is as important
to use existing explicit knowledge if available. That includes classifications
already assigned to advertisements in a collection like the Yellow Pages. A lot
of this knowledge is valuable as well as reliable since it has been processed
in some form by humans, in the example of Yellow Pages classifications. Ex-
isting systems do not typically go as far as to combine explicit and implicit
information, although earlier we did refer to a number of approaches that
do one or the other, e.g. clustering (implicit knowledge) or classification (ex-
plicit knowledge). Yahoo! for example used to rely entirely on a carefully
constructed classification hierarchy, i.e. explicit structure. One of our sample
applications (UKSearch) focuses on implicit structure, and the other one on
explicit structure with an option to add a domain model constructed from
implicit structure (Ypa).

Part of a typical classified directory consists of cross-references that relate
classifications to each other. An example is a link from classification Zoo to
Tourist Attractions. Clearly it is hard to create this link automatically based
on linguistic information, since this is to a large degree world knowledge. Also
a link from Garage Services to MOT is only useful in a given context. In
some countries there is no such concept like an MOT certificate. In the search

64 INTELLIGENT DOCUMENT RETRIEVAL

process it would be advantageous to include as much of the available explicit
knowledge as possible.

We will propose a fairly generic simple dialogue system that can handle
other knowledge sources, we will then present two example applications that
both implement the dialogue manager but differ in the type and amount of
knowledge sources applied in the search process.

We will not discuss extensively how and which knowledge can be incor-
porated. We only introduce the relations that capture the structure between
documents and classifications that are actually applied in one of the proto-
types, the Ypa system (see Chap. 8). All these relations are based on explicit
and implicit internal knowledge.

We start by describing the classification structure and then briefly look at
the relations between single documents.

We assume there is a function classify from the set of documents in
our collection to a set of atoms (e.g. “Zoo”, “Garage Services” etc.). We
will call these atoms classifications (depending on the context we may also
call them categories, business classifications or headings), and we will write
classification(c) to express that c is a classification (e.g. classification(Zoo)
and classify(d1) = Zoo for some document d1). We can then define:

Definition 4.1. A classification c classifies a document d explicitly, written
as classify explicit(d, c), if classify(d) = c, i.e.:

classify explicit(d, c) ⇔ classify(d) = c (4.1)

This gives us a formal definition to map documents to classifications. But usu-
ally classified directories have more structure than this. Other typical struc-
tures are links from one classification to another one (e.g. Cameras: see Photo-
graphic equipment). We capture this by introducing a relation cross reference
between two classifications. We will write cross reference(c1, c2) to express
that a cross-reference exists from classification c1 to classification c2. We can
now define a further type of classification:

Definition 4.2. A classification c2 classifies a document d implicitly, writ-
ten as classify implicit(d, c2), if there is a classification c1 that classifies d
explicitly and there is a cross-reference from c1 to c2, i.e.:

classify implicit(d, c2) ⇔ (∃c1 classify(d) = c1

∧ cross reference(c1, c2))
(4.2)

Definition 4.3. A classification c classifies a document d, if c classifies d
implicitly or explicitly, i.e.

4 Incorporating Additional Knowledge 65

classify(d, c) ⇔ (classify implicit(d, c) ∨ classify explicit(d, c)) (4.3)

The definitions so far seem to be merely another way of describing the
structure that is already available in sources such as classified directories. A
closer inspection reveals that they are more general. First of all, we do not
have to use existing cross-references, but instead we could construct them au-
tomatically based on some similarity measure (e.g. based on term frequency,
concepts etc.). Secondly, the classifications do not necessarily have to be ex-
pressed by natural language phrases but could be more abstract such as integer
values (both of these issues arose when we used the Ypa system with Talk-
ing Pages data rather than Yellow Pages data, the discussion of which goes
beyond the scope of this book). Thirdly, and most importantly, imagine we
substitute the term “classification” by the term “concept” (of some type). As
a result we can construct a domain model as described earlier. We only need
to consider the following three aspects:

• We turn a classification into a set of concepts by either treating the clas-
sification as one concept or breaking it down into a set of nouns and noun
phrases.

• We treat cross-references between two classifications as a relation between
the concepts extracted in the first step.

• This gives us the notion of “concepts” and “related concepts” to construct
a domain model in exactly the same way as we have seen in the previous
chapter.

To be more precise, we will start with explicit classifications. If we do have
an existing classification structure (e.g. names of business classifications), then
we can select nouns and noun phrases and use them as explicit classifications.
We can write classify explicit(d, c) to express that d is explicitly classified
under (concept) c. For example, an advertisement d could be classified under
the heading Cameras. We could then write classify explicit(d, cameras), if
we treat cameras as a concept.

Using concepts instead of classifications we could then define cross-references
as follows:

cross reference(c1, c2) ⇔ rel concepts(c1, c2) (4.4)

This gives us the following variation of Definition 4.2:

classify implicit(d, c2) ⇔ (∃c1 classify(d) = c1

∧ rel concepts(c1, c2))
(4.5)

66 INTELLIGENT DOCUMENT RETRIEVAL

cameras

photographic_goods

equipment

equipment_repairs

goods

photographic_equipmentt

...

Fig. 4.1. Concept tree for classification term cameras

Similarly, we will then say that a concept c classifies a document d if c
classifies d explicitly or implicitly as we have defined it in Definition 4.3.

The only significant difference between real classifications and our au-
tomatically created domain model is that the relation between concepts is
symmetric while in general cross-references are not. However, we will treat
them as symmetric, which means that a link from a classification Cameras to
Photographic Equipment will also be treated as a link the other way round. As
a result of this model construction process we obtain the same structures that
we have seen in the last chapter (see Fig. 4.1 for part of an example concept
hierarchy - nodes are respresented as single concepts).

The structure imposed by classifications and cross-references can also be
utilized to introduce a cross-reference relation on the document level, but
we would call this a link relation in accordance with common usage of that
term. We could capture this type of internal knowledge with the following
definitions.

Definition 4.4. An explicit link exists from document d1 to document d2 if
both documents are explicitly classified under the same classification c, i.e.

link explicit(d1, d2) ⇔ (classify explicit(d1, c)
∧ classify explicit(d2, c))

(4.6)

Definition 4.5. An implicit link exists from document d1 to document d2 if
d1 is classified under c1 and d2 is classified under c2 and there is a cross-
reference from c1 to c2.

Definition 4.6. A link exists from document d1 to document d2 if there is an
implicit or an explicit link from d1 to d2.

These definitions simply propagate the classification structure down to the
document level by introducing links between individual documents classified
under “related” business classifications.

4 Incorporating Additional Knowledge 67

Finally, we could combine this with explicitly expressed links within doc-
uments (e.g. hyperlinks in Web pages or citations in research papers).

We will however not explore this issue, because document level relations tie
the domain model closely to the document collection. We, on the other hand,
focus on a model that can be used independently of the individual documents.
Therefore, we will not elaborate on such relations.

4.2 External Knowledge

We may also want to incorporate some external domain knowledge in the
outlined approach. For example, WordNet might not be suitable as the only
source of linguistic knowledge in a search task, but it proves to be useful as
one of a number of models.

The structure of WordNet makes it easy to handle it like an automatically
generated domain model. We can actually make use of such external knowl-
edge. For the practical applications presented in the next part of this book we
explored WordNet’s synonym, hypernym and hyponym relations. The links
describing these types of semantic relationships are comparable with the tree
structure in the domain models we discussed so far (although WordNet rela-
tions are explicit linguistic relations). Figure 4.2 is an example of some of the
knowledge encoded in WordNet for the noun entry camera. Displayed are the
hypernym relationships for that entry.

We incorporate external knowledge sources by means of a ranking function
that judges the relevance of different types of relations in a given context. This
is part of the customization step necessary to set up the dialogue manager.

Apart from some readily available external knowledge or other suitable
sources as characterized above one can also construct domain models using
different techniques (i.e. not based on document markup). For example, ex-
tracting conceptual information or relations between terms based on linguistic
or word frequency information may result in additional domain models. At
this stage we see this option as a potential back-off technique, i.e. to be used
if the markup-based extraction fails to deliver useful results. It remains part
of the future research to see which technique works best in a given situation
and how to best combine a number of extraction techniques.

68 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 4.2. WordNet: some knowledge encoded for camera

5

A Dialogue System for Partially Structured
Data

Search engines are an excellent tool for locating relevant information in a
matter of seconds. The user merely has to type in the request and the result
is a ranked list of documents. Not even the document format seems to matter
anymore. Not long ago only some specialized search engines like CiteSeer1 [96]
would have handled formats like Postscript or PDF; now it seems common
practice to retrieve PDF files alongside pure text documents.

However, with an average query length of between two and three words it
seems difficult to select the most relevant documents from what was estimated
back in 1999 as a pool of already 800 million pages on the publicly indexable
web [97]. How can a two-word query describe precisely what the user is after?
This is true not just for searches on the entire Web but also in smaller domains
such as the ones discussed in this book. Our solution is to initiate a dialogue
exploiting domain knowledge that helps the user navigate to the set of most
relevant documents. Obviously, this dialogue needs to be short and should
only be started if necessary. Furthermore, the choice of how to get to the best
matching documents must be left to the user. The dialogue must not dictate
the next steps.

As we have seen earlier, a user searching the Essex University Web site for
“union” might not be aware of the fact that the query is highly ambiguous. We
pointed out that there are Web pages in that domain presenting information
about the trade union, the students union, the European union and a Christian
union. Not just that, but there is a number of pages devoted to discriminated
unions.

We argue that a simple dialogue system should be used which is based
around some domain knowledge. This chapter will lay the foundations of the
dialogue system that accesses the domain models described in Chap. 3 and
incorporates other available structures as indicated in Chap. 4.

It should be stressed again that what we mean by “dialogue” in this con-
text is a fairly narrow interpretation of the concept. We are interested in

1http://citeseer.ist.psu.edu

students union
discriminated

70 INTELLIGENT DOCUMENT RETRIEVAL

information seeking dialogues, interactions between users and a system where
the system is to provide the information the user is interested in. The dialogue
steps (or dialogue moves) are transitions between fairly simple dialogue states.
Our dialogue system is based on a few fundamental ideas, some of which have
already been introduced, the others will be discussed in this chapter:

• The document set defines the concepts available. These concepts are struc-
tured in a domain model. This is done in an automatic offline process.

• The concepts (and any other user query terms) are used to express the user
query formally. We will call such a formalized query a goal description.

• The dialogue can be seen as a movement in the space of goal descriptions.
The system always tries to present suggestions of how to change the current
user request. These suggestions are presented as possible options for a user
to choose from and they typically represent refinements or relaxations to
the original user query.

• Goal descriptions are translated into queries to the search system. The
queries represent a list of results. The relation between a goal description
and queries defines refinement and relaxation steps that drive the dialogue
manager.

5.1 Dialogue as Movement in Space

A dialogue between a user and a system can be seen as a sequence of steps
taking the user from an initial state to a final state in a script that predefines
permissible steps. However, in this context dialogue is best defined as a move-
ment in the space of descriptions of (the content of) documents. Those de-
scriptions act as constraints that can be specified or relaxed in the interaction
between the system and the user. The ultimate goal is to find an appropriate
set of documents in a collection (represented by a set of descriptions) that
matches the user’s information need.

Descriptions of documents can include properties of single documents as
well as relations between documents, which can all be abstracted as a set of
basic categories like word, classification and linkage information. How these
properties show up or how they are encoded depends largely on the particu-
lar domain. For example, containing a certain keyword can be a property of
single documents. Other such properties can be keywords found in the title,
or information about document type or classification etc.

Relations between documents could be represented by explicit or implicit
links between two documents (e.g. hyperlinks in HTML documents) or by the
fact that two documents are stored in the same directory.

We want such a dialogue between a system and a user - which exploits
descriptions of documents - to satisfy at least the following criteria (this is the
same list of informal requirements that we had identified in the introductory
chapter):

5 A Dialogue System for Partially Structured Data 71

• allow the user to refine or relax the information request if necessary
• take as little as possible (in terms of dialogue steps)
• present the user a number of choices to continue the dialogue if this is

appropriate
• present the best possible choices only
• avoid unnecessary dialogue steps.

When will a dialogue step be necessary? If the user’s information request
can be satisfied by a set of matching documents, then these matches can
be presented and from the system’s perspective no further dialogue steps are
necessary. However, the user may not be happy with the answers or might want
to explore some of the query modification options that have been suggested
by the system. Therefore, the user should always be allowed to continue the
dialogue.

Whether the system always displays the best matching documents along-
side query modification options or whether such matches will only be displayed
once the information request is specific enough depends on the system setup.
If we search a Web site, then we may want the system to behave like a stan-
dard search engine. The best matching documents would then be presented
alongside query modification options suggested by the system. Search in a
classified directory however will probably have a more sophisticated dialogue
component, and no documents (i.e. advertisements) are displayed unless the
information collected from the user has been specified to a certain degree.

To be more concrete, we want a dialogue system that will satisfy the
criteria outlined above by navigating a user through the available documents.
This dialogue is driven by the domain model.

5.2 Dialogue Example

A simple example to illustrate our dialogue system is the system’s response
to a user query that retrieves a large number of documents. We will concen-
trate on deciding which query refinement terms are useful to offer the user in
this case. The only document description our system deals with is one that
describes whether a keyword is or is not an index term for a document.

We assume the query to be a set of terms. Let the current query describe
the set of documents called Cluster 1 which is a subset of our document
collection (depicted by Fig. 5.1). The next step is to determine discriminating
terms that retrieve subsets of Cluster 1. In the simplest case we only consider
concepts. All concepts related to any of the current query terms are considered
as candidates. We can consult the domain model and assess the trees whose
root nodes contain query terms. As a result the dialogue step would involve
the display of the “best” concepts and the user can choose one or can select
some other possible option. Because we are only dealing with concepts and
not keywords in general, this is a feasible task that can partially be performed
offline as described earlier.

72 INTELLIGENT DOCUMENT RETRIEVAL

Cluster 5

Cluster 2

Cluster 3

Cluster 4

Cluster 1

Fig. 5.1. Clustering the potential results

What are the “best” concepts? The example in Fig. 5.1 represents exactly
four potential concept terms applicable to the current query. Each of the sets
refered to as Cluster 2...5 are the sets of document defined by adding exactly
one of the potential concept terms to the current query. Now we consider
all those concepts which result in non-empty document sets. It is obvious
that the created document clusters can overlap. In the introductory example
the terms students union and christian union are such a case. Furthermore,
the partitioning of the document set is normally not exhaustive, because the
number of concepts is fairly restricted (simply because we do not want to
present more than a certain number of options to the user). The dialogue
should help the user find the actual documents he or she is interested in. It
seems intuitive to present some possible ways to refine the query, preferably
picking good discriminators. From what was said so far, the concept terms
representing each of the clusters in the example would be possible user choices.
However, we do not want Cluster 4 and Cluster 5 being presented side by side.
Instead, the larger document set is selected as a choice alongside the option
to refine the query even further. All this is exactly what the domain model
gives us!

Now the user has to decide how to continue the dialogue. The discussed
options will be displayed alongside some standard choices which include:

• Use the text input field to modify the current query.
• Display the best matches only (if this has not already been done so as part

of the initial query processing step).

The text field is necessary to give the user the freedom to decide what to
do next. If the terms that are offered by the dialogue system are not relevant
for the current search request, then the user might want to provide additional
information. The user could also use the input field to ask for help, restart
the dialogue or relax the current query (as for example in “No, I want the
students union Web page.”).

5 A Dialogue System for Partially Structured Data 73

The user can also select one of the default choices as listed above. This is
not an exhaustive list. The customization of the dialogue system can introduce
a number of very detailed options. For example, the dialogue component in a
directory enquiry system such as the Ypa (see Chap. 8) might offer the user to
display all results that could be found by searching for company names if this
is appropriate, or it could list a number of relevant directory classifications.

Note that user and administrator have some freedom of defining the max-
imum number of possible choices to be presented. The dialogue system will
rank all choices and display only those with the highest relevance values. Once
a user has made a choice, the process of calculating possible query modifica-
tion suggestions starts again and a dialogue step is performed.

5.3 Static vs. Dynamic Clusters

The task of the dialogue manager is to guide a user to a cluster of relevant
documents as a result of a search task. Potentially interesting clusters of doc-
uments representing relaxation or refinement steps are being investigated and
evaluated by the system each time the user submits a query or makes a choice.
These clusters are defined by document descriptions, i.e. a number of variables
to describe different parameters of the documents to be retrieved.

However, as we have stressed in the introduction, there are really two
types of document clusters that we distinguish: the ones that can be created
offline and the ones that have to be constructed on the fly. Earlier, when
we discussed the domain model construction we actually explained how the
offline clustering works. Concept terms are used to modify queries consisting
of other concept terms and the results of that are encoded in the domain
model. As long as the user submits queries that consist of terms identified
as concepts in the indexing process, a simple lookup in the domain model
will retrieve a number of query modifications without the need of any online
processing. After all, the domain model is based on the idea of organizing
discriminating terms so that the domain model is a useful tool to be applied
in the search task.

But when dealing with real user queries we will not be able to rely entirely
on what is encoded in the domain model. We have no idea what queries are
going to be asked and how the user decides to continue in each interaction
with the system. Therefore we will have to consider creating other options on
the fly by consulting the available knowledge sources.

5.4 Real User Queries

To illustrate the dialogue on realistic examples we pick some of the queries
most frequently submitted in our Essex University sample domain (using a
version of the implemented UKSearch system prototype which differs from

74 INTELLIGENT DOCUMENT RETRIEVAL

the version explained later in that it accesses its own database and not a
search engine). When looking at the examples it must be kept in mind that
no manual modification was applied to the resulting concept structure (the
database used is a version that is older than the one reported elsewhere in
this book, and all the options we will see are query refinement options).

Let us first go back to the introductory example. The user asked for
“union”. There is a large number of matching documents. Let us assume the
threshold of the maximum number of matches set by the administrator in this
case is 50, i.e. if more than 50 matching documents are found, the system will
initiate a dialogue (i.e. “too many” matches). Alongside the default choices the
search system offers four concepts, each of which could constrain the original
query: trade union, student union, christian union, discriminated union. The
user selects students union (another frequent query submitted to the search
engine at Essex University). Say there are still “too many” matching docu-
ments. The choices generated by the system are as follows:

• Display the most significant matches only.
• Constrain the query by adding one of the following terms:

– bar
– welfare
– entertainment
– shop

• Supply more information using the input field to constrain the query.

At this stage the user decides to see the most significant matches only.
The 37 best matches are displayed (in this particular case we retrieve all
those documents for which the query terms were found to be concepts).

Let us look at two more examples, both from the top ten most frequently
submitted requests according to the Web server’s log file (recording submis-
sions over a period of several months). The most frequent query was (possibly
surprisingly) one unrelated to the university: “yahoo” (it needs to be pointed
out that the log files were recorded in 2001, nevertheless we would have ex-
pected some domain specific query to come top of the list).

Figure 5.2 displays the concepts that the dialogue system would propose
based on the domain model if the original query was “yahoo”. That means
each of the four related concepts is a possible choice to constrain the query
leading to more specific results. Of course, the user is free to add any other
query terms in the input field provided.

Another example from the top ten most frequent queries is the user request
for a “prospectus” as displayed in Fig. 5.3. This is another example that shows
the significant differences between a domain-independent world model and the
one extracted automatically.

5 A Dialogue System for Partially Structured Data 75

search_engine

altavista

information_service

excite

yahoo

Fig. 5.2. Query refinement options for the example query “yahoo”

prospectus

e_prospectus

mail_post

request_form

undergraduate_degrees

postgraduate_study
&

research_study

student_life

Fig. 5.3. Query refinement options for the example query “prospectus”

5.5 Properties

The dialogue between user and system is formally best described in a bottom-
up fashion. We will first define the essential elements needed to formalize a
dialogue state starting with document and system properties. These proper-
ties are used to capture more formally what the user is after. They basically
encode the actual user query, but can include other information such as certain
parameters of the search engine that the user can specify. All these proper-
ties with their appropriate values give us a formal representation of the user
request, which we will refer to as a goal description.

Based on these definitions we will characterize dialogue steps, dialogue
strategies and the scope for customization (something discussed in more detail
in the later chapters on practical applications).

76 INTELLIGENT DOCUMENT RETRIEVAL

5.5.1 Document Properties

First of all, we define properties of documents which are used to match user
queries against the documents in the collection.

A property of a document is an attribute of a document that can be as-
signed elements from a suitable domain as its argument.

An example property of a document can be: “the document contains a
set of keywords”. Let the domain be the power set of the set of all keywords
in a document collection. In that case a possible value in this domain might
be {essex, university}. One needs to define a “matching function” for this
particular property that decides for any given document in the collection how
well the attribute-value pair (e.g. keyword({essex, university})) matches the
document. We could simply assign truth values, but we want to keep things
more general to assign for example a ranking value that characterizes how
well a particular value of a property matches a document. In the following we
will consider the interval [0, 1] of real numbers as codomain for any of those
functions (and treat true as 1, false as 0).

Note that this is no attempt to introduce fuzziness just for the sake of it.
It is rather a pragmatic move based on the actual applications we have in
mind. By allowing values that are not just true or false we can incorporate
standard information retrieval measures such as term frequency and inverted
document frequency or other information we can derive from the data sources.
In the above example we will be able to distinguish a document that merely
mentions the phrase “University of Essex” from something like the home page
of the Essex University Web site.

We define a document description as a set of attribute-value pairs where
each attribute is a property of a document and its value is an element from
the domain of that property.

5.5.2 System Properties

The terminology we have introduced so far should be sufficient to formally
express the user’s information needs in respect to the documents. In addition
to that, we introduce another set of properties that specify how the user needs
are to be matched against the database in the search system. When we refer to
the search system (or system for short) we mean the apparatus (implemented
or not) that has been set up to search a particular document collection; e.g.
the Ypa and UKSearch are two such search systems.

A property of a search system is a parameter of the system that can be
assigned elements from a suitable domain as its argument.

We use system properties to encode parameters that control the search
process, for example parameters that define the search space, the domain
models etc.

System properties do not just work as simple parameters, they include
references to the world models to be applied and a number of system specific

5 A Dialogue System for Partially Structured Data 77

settings. Some of those properties are “read-only”, i.e. a user cannot change
them, others will be changed automatically or can be set by the user explicitly.
For example, in the default Ypa system the user cannot modify the type of
world models that are consulted in the search process. On the other hand, the
system might produce an option that the user can select which says “Show
me addresses that were found by searching company names as well.” If the
user selects this option, then the request will be handled with the system
properties adjusted appropriately.

A system description is a set of attribute-value pairs where each attribute
is a property of a search system and its value is an element from the domain
of that property.

5.5.3 Goal Description

A goal description is a set of attribute-value pairs where each attribute is a
document property or a system property and its value is an element from the
domain of that property.

This last definition is the framework to comprehensively describe a user’s
information need in respect to the required documents as well as the desired
system parameters. A goal description is something like a formalized user
query. At each stage of a dialogue we can have a look at the goal description
and see the current user request. In the simplest case we would just have a
list of keywords. In a more advanced search system like the Ypa we have a
number of properties that can be tuned and changed during the dialogue,
including the system properties to represent the search strategy:

• Should all index tables (including the business names) be searched? Or
just the free text?

• Should an external world model be applied? If so, which relations?
• If a world model is to be used, should it always be applied or only if the

search without applying the world model does not find “enough” docu-
ments?

Possible world models could be linguistic knowledge sources such as Word-
Net, domain specific ontologies, the domain model derived from the existing
classification structure, or some commonsense knowledge. We do not want to
specify that here. In the Ypa we allow the user to switch the use of a world
model on or off. If it is switched on, the system accesses the automatically
constructed domain model (as described in Chap. 4) as well as WordNet’s
synonyms to suggest query modifications.

Some document properties in the Ypa are (note that the documents in
the Ypa system are classified advertisements):

• Keyword x can be found in the business name of the advertisement.
• Keyword x can be found in the business classification.

78 INTELLIGENT DOCUMENT RETRIEVAL

We have not defined how a goal description is matched against documents
in order to retrieve a set of documents. The reason is that the actual query
format depends on the search engine, also the expressiveness of a query will
depend on the capabilities of the search engine. A simple search engine will
only allow a list of keywords as a query. A more advanced search engine will
encode other properties (as in the example of the Ypa).

5.6 Dialogue

The interaction between user and search system serves the purpose of taking
the user from some initial search request to a satisfactory set of answers. In
other words, the goal description is constantly being updated in a sequence
of simple dialogue steps until it matches a set of documents the user is happy
with (or until it has been established that no suitable matches exist for the
user’s request). A dialogue step can be seen as a number of smaller steps to
be performed in this order:

• evaluate the user input
• calculate the new dialogue state
• perform all actions corresponding to the state transition (e.g. display re-

sults and choices).

It was said earlier that we understand dialogue roughly as a movement
in the space of document descriptions. That means there are - in the most
rigid sense - no strictly defined dialogue states as they are commonly used in
dialogue systems. Our dialogue states are calculated automatically, and as we
will see they are represented as a tuple containing a number of different types
of information.

However, having said that, at a high level we can map our dialogue system
to a state-based system that is extremely simple. In the following we will first
look at this simple abstraction and then move on to describe dialogue states
at a more detailed level.

5.6.1 High Level Dialogue States

The dialogue is handled by a dialogue manager. To break down the tasks of
a dialogue manager we can consider it to consist of two domain-independent
parts that can be customized to fit a particular application: a core dialogue
manager and a default dialogue manager.

The core dialogue manager covers all tasks to be handled by any similar
dialogue system without having to access the database system. This would
detect:

• that a user wants to quit (or restart) the dialogue
• meta queries (where the user asks for some help etc).

5 A Dialogue System for Partially Structured Data 79

The default dialogue manager is this core engine expanded by adding cover-
age of the other states that can occur in information seeking dialogue systems,
namely:

• a database access is successful
• a database access results in too many matches
• a database access results in too few matches
• information is missing (a submission to the database requires more infor-

mation)
• the user provided unknown input, i.e. the dialogue manager detected some

input that cannot be interpreted (this state typically triggers a clarification
step)

• some inconsistency occurred, i.e. the dialogue manager encountered an
error (e.g. the database system is not available).

This outline compares to the two-layered dialogue architecture in [2], where
the default dialogue manager covers the upper layer of dialogue states, and
where customization may refine those and add a second (domain-dependent)
layer. Differences, however, are the set of dialogue states and the distinction
made between the various possible states.

The set of dialogue states above is fairly small and proved sufficient for
the Ypa system. But we can reduce this set of states to an even smaller
set if we assume that in our system the best matches for the current goal
description are always displayed, whether there are thousands or no matching
documents. This compares to what standard Web search engines do, except
that we enrich the result by presenting potentially useful choices that a user
can select to continue the search along a particular direction.

The way we reduce the set of outlined dialogue states to an even smaller
set is by treating a number of different states as special cases of some more
general state that we call the Display state. Conceptually, we do not want to
distinguish between a database access resulting in too many or one resulting
in too few matches. In each case the new dialogue state needs to encode
a set of matching documents and a set of possible options; only in one case
the options will mainly consist of potential query refinements and in the other
one it will be query relaxations. Therefore, the two states expressing too many
matches and too few matches are just instances of the Display state. Similarly,
a state representing a successful query is conceptually no different: the state
is characterized by some set of matching documents and potential options to
continue. This may sound as if we are conflating states here that should really
be treated differently. In fact, in the Ypa system we do treat the three states
differently. But look at a dialogue-based Web search engine in which we want
to clearly separate the dialogue manager from the index database, because
we may not be interested in building our own search engine and instead just
incorporate an existing one that makes sure the database is always kept up-to-
date. The dialogue manager has access to the automatically acquired domain
model and should not be linked too closely to the search engine to find out

80 INTELLIGENT DOCUMENT RETRIEVAL

whether there are any matches for a particular query or not. The dialogue
manager will therefore not “know” how many matches can be found for a
user query. Yesterday the search engine may have returned 2 documents, today
it could be 50. The dialogue manager should calculate suggestions (derived
from the domain model) that would be sensible for both cases, i.e. options for
making the query more specific or more general. The user will decide which
ones are most sensible. UKSearch is an example of such a dialogue-based
search system for Web documents as we shall see later on.

We can therefore abstract all the necessary dialogue states to be expressed
as an instance of one of the following states:

• Start: The dialogue starts in the Start state.
• Display: The Display state can be considered the default state in that any

user input typically returns a result. This result will be the best matching
documents together with choices that the user can select from to continue
the dialogue.

• Meta: The Meta state represents a user request for some meta information.
• Unknown Input: The system does not know how to interpret the input.

This might require some clarification dialogue.
• Missing: More information is required to access the database. In some ap-

plications it is necessary to provide a minimum of information to move into
the Display state, e.g. to find a classified advertisement it is not sufficient
to specify the location or payment method only.

• Inconsistency: Some inconsistency occurred.

A transition is possible from each state to any other state. We do not claim
that this set of states is in some sense universal, it just seems adequate for
ad hoc search tasks. In fact, Fig. 5.4 depicts the dialogue in a simplified way
where we distinguish only three of the states. User input is abstracted as Input
in the diagram. As we will see later, the UKSearch system only distinguishes
these three states in its basic implementation.

From the system’s perspective only the Display and Inconsistency states
are final states. However, a user can consider any of the states a final state.

Now, the most interesting aspect in Fig. 5.4 is the transition between
Display state and Display state.

In the following we will concentrate on looking inside the Display state
and break this state down into a number of possible “low level” states that
are defined by some parameterized representation of user request, dialogue
history and other pieces of information.

5.6.2 Low Level Dialogue States

We will leave aside all states other than the Display state for now. In the
practical applications we will come back to the other states, but they are of
no theoretical interest in this context.

5 A Dialogue System for Partially Structured Data 81

Display MetaStart

Input

Input
Input

Input

Input

Input

Inputt

Input

Input

Fig. 5.4. High level abstraction of the dialogue

All the dialogue steps we investigate now are transitions from Display state
to Display state. Therefore, it makes sense to look at a lower level of dialogue
states, a level which distinguishes dialogue states which are all instances of
the high level Display state.

The dialogues we describe are system initiated. Although the user has
some freedom to navigate through the dialogue, it is basically an information
seeking task that needs to be performed and the system is merely an assistant
to help the user get to the right set of answers. As such the focus is a system
that presents results alongside possible choices the user might want to consider
to continue the search task.

How do we move from one state to the next one? The general idea is to
analyze the current dialogue state and the user input in order to generate a
new dialogue state (in other words: to perform a move). We characterize a
dialogue state by:

• a dialogue history
• a goal description (i.e. the current formalized user query)
• the list of results that matches this goal description
• a list of potential user choices (options to relax, refine or change the query

in other ways).

The list of choices is selected from a set of possible modifications to the
goal description taking into account their effect on the result set. Again this
might sound very general. The reason here is that we will be able to describe

82 INTELLIGENT DOCUMENT RETRIEVAL

a variety of dialogue strategies depending on how those possible choices are
to be selected by the system.

Relaxation and refinement steps are the essential building blocks that de-
fine the choices a user can select from to continue the dialogue. Ideally, our
dialogue system would explore all possible ways for relaxation and refinement
and select the best ones. However, for two reasons we do not follow that route.
First of all, the complexity involved would slow down the response time sig-
nificantly, and that would make this work irrelevant for practical applications.
The second reason is our experience that users are generally not very happy
if the system performs actions that cannot be explained, e.g. automatic query
expansion using hypernyms and synonyms [93]. Therefore, each of the choices
represents a single refinement or relaxation step. As far as possible, refine-
ment and relaxation choices are derived from the domain models that are
built automatically based on the documents’ markup structure.

The system should not be restricted to offering either constraining or re-
laxation options only. A data driven approach could well present both types
of suggestions alongside each other.

A ranking function needs to evaluate each of these choices and return a
ranking value that will make sure that only the most relevant choices are
presented. Thresholds and cutoff points can be defined depending on the par-
ticular application.

Each of those choices can be broken down into a goal description and some
input. The input is what the user is offered and selects (for example a new
query term that is added to the original query), the goal description is a formal
representation of the new search request that combines the new input with the
goal description in the previous dialogue state. For example, assume a simple
goal description format which only represents a set of keywords, and the user
asked for “union”. A possible choice could then be represented by some phrase
such as “Do you want to add european union to your query?” (this is the input,
i.e. what the user is offered), and a new goal description that represents a query
consisting of the two query terms “union” and “european union”.

So far we have concentrated on the list of choices that the dialogue system
calculates and presents. However, the user could ignore all this and instead
submit some text in the input field. An example would be if the user who
asked for “union” cannot find any sensible suggestions and types in “statistics”
(knowing that there is a number of documents about trade union statistics
in the collection). Alternatively, the user could have input some help request.
Given such an input, the calculation of a goal description and a new list
of results is straightforward (but again application-dependent). The input is
parsed in some appropriate way and where necessary properties of the goal
description are updated using the value of these properties submitted via the
user input. A list of results is constructed by turning the goal description into
a query and submitting the query to the database system (to be discussed
later).

We can summarize all this more formally as follows:

5 A Dialogue System for Partially Structured Data 83

Definition 5.1 (Potential Choice). Given a search system S, we define
a potential choice as a tuple < Goal, Hist, Input > where Goal is a goal
description, Hist is a dialogue history and Input is a user input.

Definition 5.2 (Dialogue State). Given a search system S, we define a
dialogue state as a tuple < Goal, Hist, Choices, Result > where Goal is a goal
description, Hist is a dialogue history, Choices is a list of potential choices,
and Result is a list of documents.

The definitions need some further explanation. Definition 5.2 expresses
the general idea of a dialogue state that is being defined by a goal descrip-
tion representing the current information request, a dialogue history and the
necessary return values calculated by the system in response to the last user
input.

Note that each element of Choices will again contain some goal description
and history elements. They will all differ from each other because each choice
represents a different user input; and goal description and history represent
the state after a user has selected the choice.

For the sake of abstraction we do not actually capture what exactly is
meant by “dialogue history”, “user input”, “list of choices” and “list of re-
trieved results”. The reason is that the internal representation of those ele-
ments differs from application to application. What is important however, is
what elements a dialogue state (and a potential choice) consists of.

Our definition of the initial dialogue state looks as follows:

Definition 5.3 (Initial Dialogue State). Given a search system S, the
initial dialogue state is a dialogue state < Goal, Hist, Choices, Result > where
Goal is set to its default value; Hist, Choices and Result are empty.

Since we have been very nonspecific about the components of a dialogue
state we have to do the same when we define the initial dialogue state. Being
“empty” will not be specified any further since it will depend on the actual
implementation what empty means. We only assume that the set of instances
for each of the variables that define a dialogue state must contain some null
element (i.e. the empty value). In addition to that, we also assume that a
(system dependent) default value of a goal description exists. That could for
example be the formal representation of an empty query.

The dialogue history can be quite a complex structure encoding all the
dialogue steps that have happened so far including all the user input steps,
starting from the initial dialogue state.

The user input can take a number of forms as well. It could be a typed
input, or the output of a speech recognition component. It can also be a
selection the user has made from a list of choices presented by the system
(using the mouse for example).

As outlined earlier, the list of choices a user is presented with (the Choices
argument in a dialogue state) is generated by consulting the domain models

84 INTELLIGENT DOCUMENT RETRIEVAL

and accessing the search engine. This is usually a multi-stage process which
can include a number of calls to the search engine.

For completeness, we define two functions, one that takes a goal description
and turns it into a query, and one that matches a query against the set of
documents in the collection. Obviously, the technical details are not important
here. It depends entirely on the search system how these functions actually
do the mapping.

Definition 5.4 (Current Query Function). Given a search system S, we
define the function currentquery as a function on the set of goal descriptions
to a set of queries to S.

This function is a simple translation of a formalized user query into some
other representation language. For example, a goal description that represents
a user request for “union” in the Essex domain could be translated into a query
to Google which might then look as follows:

www.google.com/search?hl=en&ie=ISO-8859-1

&q=union+site%3Aessex.ac.uk

Definition 5.5 (Retrieve Function). Given a search system S, we define
the function retrieve as a function on the set of queries to S to the power set
of documents in the collection.

To be more precise, we retrieve a ranked list of documents. What needs to
be mentioned is that probabilistic retrieval systems treat every single docu-
ment as a match with a possibly very small relevance value. In that case one
can define some cutoff point and treat all those documents as matches whose
relevance values are above that point.

Now we shall define how a dialogue state is calculated. Again, the cus-
tomizations for particular collections will be left for later when we get to
describe the example applications in detail. The underlying principles will be
discussed here. We can see dialogue as a state machine in which however the
dialogue states are dynamically constructed.

Definition 5.6 (Dialogue Function). Given a search system S, a dialogue
function trans is a function that maps all ordered pairs of dialogue state and
user input to dialogue states.

We write S2 = trans(S1, Input) to express that dialogue state S2 is the
result of applying dialogue function trans to a dialogue state S1 and a user
input Input. The process of applying the dialogue function is called a dialogue
step.

So far we assumed that a user is presented a list of options that he or she
can choose from to continue the search process if the results returned so far
have not satisfied the information needs. These choices include the addition
of query terms for query refinement or the relaxation of the query in some

5 A Dialogue System for Partially Structured Data 85

specified way or the choice to just add some more specific information. The
actual user selection is evaluated against the current dialogue state to move
to a new state. However, what remains to be discussed is a methodology of
how the system comes up with these choices in the first place. What needs
to be done inside the dialogue system to transform the current dialogue state
and the user input into a new state that contains a new set of options a user
can choose from? We will show that a new dialogue state is not an element of
some predefined set of permissible states but is being generated dynamically
(not in the abstract but in the computational sense).

5.6.3 Constructing Potential Choices

Generally speaking, we understand refinement and relaxation as follows:

Definition 5.7 (Query Refinement). Given a search system S and goal
descriptions Goal1 and Goal2, then we define Goal2 to be a query refinement
for Goal1 if

retrieve(currentquery(Goal2)) ⊂ retrieve(currentquery(Goal1)).

Definition 5.8 (Query Relaxation). Given a search system S and goal
descriptions Goal1 and Goal2, then we define Goal2 to be a query relaxation
for Goal1 if

retrieve(currentquery(Goal2)) ⊃ retrieve(currentquery(Goal1)).

Analogously, in terms of dialogue steps:

Definition 5.9 (Refinement Step). A dialogue step from a dialogue state
< G1, H1, C1, Result1 > to a new state < G2, H2HH , C2CC , Result2 > is a refine-
ment step if Result1 ⊃ Result2.

Definition 5.10 (Relaxation Step). A dialogue step from a dialogue state
< G1, H1, C1, Result1 > to a new state < G2, H2HH , C2CC , Result2 > is a relax-
ation step if Result1 ⊂ Result2.

The above definitions are very general, and it is questionable whether they
are very useful when, speaking in terms of queries, one considers two queries
that seem to have nothing in common except that coincidentally one of them
matches a set of documents and the other one a subset of that. This is only a
theoretical problem, because when we apply the definitions we actually look
at pairs of closely related queries, e.g. pairs of queries (or goal descriptions to
be precise) where one is the result of a simple modification of the other one.

For the calculation of potential choices we use the automatically con-
structed domain models. Instead of querying the search engine with a large
number of potential query modifications it will often be sufficient to consult
the domain models. As described in earlier chapters, those models are con-
structed in a purely data driven process. The resulting concept hierarchies

86 INTELLIGENT DOCUMENT RETRIEVAL

encode information about how conceptual terms detected in the document
collection are related to each other, about the distribution and discriminating
power of concepts in the document collection etc. Note that we say it is often
sufficient to consult the domain models. We have to point out that it may well
be appropriate to construct potential choices on the fly. Our domain models
do not encode all possible relationships. We restrict the size of the concept
hierarchies. Earlier we presented an example where a user originally asked for
“union” and could not find any sensible refinement options. This user then
enters “statistics” in the input field (knowing that there are documents about
trade union statistics). Now those two terms have been identified as related
concepts, but this relation never found its way into the domain model, be-
cause each of these two terms has a large number of related concepts. Most
of these relations seem to be more prominent than the relation between the
two concepts union and statistics.

Each query refinement or relaxation is called a query modification and
we have to rank them in order to construct potential choices that can be
presented to the user. Only the most highly ranked query modifications are
chosen to turn them into potential choices. We define a function that ranks
query modifications:

Definition 5.11 (Choicerank Function). Given a search system S, a goal
description Goal and a set of query modifications Q, then we define the func-
tion choicerank as a function from Q to the interval [0, 1] of real numbers.

The ranking function might consult a number of independent properties
like the quality of a query term as a discriminating term, e.g. a query refine-
ment term should reduce the set of retrieved results significantly but must
not result in an empty answer set etc.

There are a number of such issues involved, some of which are interlinked.
An optimal ranking function will involve the use of some heuristically acquired
parameters that reflect the particularities of the selected document collection.
Part of that is encoded in the domain model.

Here we will concentrate on some obvious observations that guide the
selection and ranking of query modifications based on the automatically ac-
quired domain model. For simplicity we will only look at modifications of the
actual set of query terms and ignore other document properties and system
properties altogether. Therefore we will talk about queries instead of using
the more precise term of goal descriptions in the following discussion.

We assume that a domain model has been constructed and the sample
concept hierarchy depicted in Fig. 5.5 is part of this model. This hierarchy is
only one among many others. Each node consists of a set of concepts. In this
example we use letters, each of which stands for a concept. See Sect. 3.5 for a
more concrete example from one of the sample domains.

What follows are a number of examples to highlight how this sample hier-
archy can be utilized in building query modification options that are presented

5 A Dialogue System for Partially Structured Data 87

{a}

{b, c}

{h}

{i, j}

{m}

{k, l}

{g}

{e, f}

{d}

Fig. 5.5. Sample term hierarchy

to the user. Remember that each concept hierarchy is derived from the data
found in the document collection. Therefore, an isolated node somewhere in
the hierarchy is not very meaningful. The hierarchy needs to be interpreted
top down: the root node represents a query. Each branch from the root down
to the next level represents a query refinement, the refining query terms being
located in each of the nodes in this next level (see Sect. 3.5). As a result of
this we will only consult parts of the domain model where the query terms
are close to the root node or where a coherent path of query terms can be
constructed from the root down to a lower level.

The examples follow very closely the strategy of calculating query modi-
fications applied in UKSearch. Other applications may apply different strate-
gies.

Example 1

Suppose the user query consists of the single query term a. The domain model
will be consulted to construct potential query modifications. The hierarchy in
Fig. 5.5 only allows us to choose potential query refinements but not query
relaxations for this particular query (an example where the hierarchy can be
used for relaxations will be discussed further down). There are three refine-
ments we consider. Each of them involves the addition of terms to the original
query, so that the user will have the choice among the following three options:

• add terms b and c - or alternatively just one of these two - to the current
query (as a result we now have a query that consists of query terms a, b
and c), or

• add term h to the current query, or
• add terms i and j to the current query.

88 INTELLIGENT DOCUMENT RETRIEVAL

The weights of the corresponding arcs (not displayed in the figure) will be
used to rank the modifications accordingly. The same is true in the following
examples and will not be elaborated further.

Note that we do not go beyond a single refinement step (as explained
earlier). This is the reason why we do not use the hierarchy to investigate any
query modifications other than the ones listed above.

Note also that in this example we only outlined the query modifications
that can be constructed based on the single hierarchy in Fig. 5.5. A simple
dialogue system will indeed only consider hierarchies whose root node contains
the query term a. However, the domain model typically consists of a large
number of hierarchies. Apart from the example hierarchy one may consult
others to construct potentially useful query modifications (e.g. hierarchies in
which the query term is in a daughter node of the root, as we will see in the
next example). Eventually, all the constructed choices need to be ranked and
only the most highly ranked ones are chosen. For simplicity we ignore this
here.

Example 2

Suppose the user query consists of the single query term b. First of all we
would consult the concept hierarchy that has b in the root node and construct
possible query refinements in the same fashion as in the first example. Apart
from those query modifications we could try to utilize the structure in Fig.
5.5 to explore more options. The tree in Fig. 5.5 could be used to construct
one query relaxation:

• replace query terms b by term a (leading to a new query that contains the
single term a).

The example hierarchy is not suitable to infer any refinement options in
this case. As in the first example, one needs to collect all possible query
modifications, rank them and only select the most relevant ones which are
then presented to the user to choose from.

Example 3

Suppose the user query is a conjunction of query terms a and b. The query
refinement options to be considered would be:

• add term d to the current query, or
• add terms e and f to the current query, or
• add term g to the current query.

The query relaxation option to be considered would be:

• replace the current query by query term a.

5 A Dialogue System for Partially Structured Data 89

Obviously, we could also offer the option to replace the current query by
query term b. However, if we stick to the example hierarchy in Fig. 5.5, we
only consider the replacement option listed above.

Example 4

Suppose the user query is a conjunction of query terms h and b. The query
relaxation option to be considered would be:

• replace the current query by query term a.

The example hierarchy is not suitable to infer any refinement options in
this case.

Example 5

Suppose the user query consists of the single query term g. The example
hierarchy is not suitable for relaxation nor refinement. One might consider a
refinement step that involves adding terms a, b and c to the query. However,
that violates the idea of a single modification step.

5.6.4 Dialogue Strategies

The way we defined the dialogue aimed at maximum flexibility when it comes
to implementing particular applications. A number of different dialogue strate-
gies can be encoded using the same framework.

Some factors that influence the strategy being used are efficiency, size of
the domain model(s), size of the database etc. For example, a very small
document collection might make it necessary to investigate a large number
of potential relaxation or refinement options for each query, while in larger
collections this search space might have to be reduced significantly in order
to generate quick answers. In the applications we use a strategy that follows
closely the examples we have seen so far.

5.6.5 Customization

It is important to note that dialogue manager, domain model and the search
engine can be completely independent components. The search engine can
be locally installed or it can be called remotely. It is called using the query
calculated by the currentquery function applied to the current goal descrip-
tion. The Result argument that is part of a dialogue state contains the results
returned by the search engine. If the domain of interest (i.e. the document
collection to be searched) is a local Web site accessible from outside like a uni-
versity Web site, it might be appropriate to construct a call to some external
search engine and evaluate the returned results (as long as the search engine

90 INTELLIGENT DOCUMENT RETRIEVAL

has sufficient coverage of the site and allows search on a particular Web site
only, a feature that Google offers). On the other hand, searching a product
catalogue or some other collection that is not available for Web search engines
usually involves a specialized search engine that is more closely coupled with
the dialogue manager (as it is the case in the Ypa system).

Throughout the last few chapters we have been making references to the
actual applications. Now is the time to introduce these implemented proto-
types. The following part of the book will describe how some specific doc-
ument collections can be processed into automatically constructed domain
models and how the dialogue framework introduced in this chapter can be
applied. This part will also discuss detailed evaluations of the prototypes.

We will first introduce UKSearch, a search system for Web documents.
Two domains will be discussed, the University of Essex Web site as well as
the BBC News Web site (Chaps. 6 and 7).

We will then look at the Ypa, a search system for data in classified direc-
tories such as the Yellow Pages (Chap. 8).

Part II

Practical Applications

6

UKSearch - Intelligent Web Search

Finding information on the Web is normally a straightforward task. For most
user requests the information can be located by applying a standard search
engine using simple pattern matching techniques. However, by restricting the
search to some smaller document collection (one that is still too large to be
searched without appropriate tools) this can become a tedious task. Examples
of such collections are corporate intranets or university Web sites. Typically
a search will return large numbers of matching documents even in smaller
document collections. If no matching document can be found, the user is usu-
ally either left alone with a great number of partially matching documents
or with no results at all. These are well known problems and approaches for
more sophisticated search systems exist to overcome them (see Chap. 2). But
those approaches tend to rely very much on a given document structure or ex-
pensively created concept hierarchies. While this is appropriate for fairly well
structured domains such as product catalogues and other applications where
the information is stored in database formats, it is no help if the document
collection is heterogeneous.

Surprisingly perhaps, the problem of not finding any document in the
collection for a user query (a form of “data sparsity”) is not necessarily a
major problem in small domains. The log files of the search engine installed at
the University of Essex Web site prove that the majority of queries that users
submit result in a large number of matching documents despite the fairly small
size of the collection. But unlike in general Web search where scalability issues
prevent the application of more sophisticated indexing steps, we can build
domain-specific concept hierarchies easily and rapidly in such well-defined
document collections using the techniques introduced in the earlier chapters.
These automatically created knowledge sources reflect the relations between
documents or terms within those documents simply based on the available
data.

Apart from that, collections of Web pages are well suited to verify the
techniques introduced in this book, as these documents are typically marked
up using HTML tags. This type of markup mixes visual markup and semantic

94 INTELLIGENT DOCUMENT RETRIEVAL

representation (as found in the meta tags for example). We turn this implicit
knowledge into explicit relations.

The earlier chapters presented the conceptual framework. Here we discuss
the practical steps that lead to an explicitly structured representation of a
Web document collection. Frequently used HTML tags are used to define
markup contexts (the fundamental units to extract concepts which are then
arranged in a domain model).

The structure imposed on the data collection is employed in a dialogue
system which assists the user with handling those queries that do not retrieve
documents or result in large numbers of matches. We will see how the general
dialogue manager introduced earlier is set up to work with the data collections
discussed in this chapter.

We will however not focus on the links between concepts and individual
documents or directories. The more interesting aspect is the construction of
domain models that are not closely tied to the individual documents, mainly
because a separable domain model is more flexible. The reason is that despite
the ever-changing nature of a collection of Web documents we will not need
to constantly update the model. A domain model that is not linked to the
individual documents will still be usable once the document collection has
been updated. It can simply be plugged into a search system.

In this chapter we will show how the extraction and search techniques are
applied to two domains of Web pages1, namely:

• the University of Essex Web site2

• the BBC News Web site3.

Detailed evaluation results and discussions will be presented in the follow-
ing chapter.

Finally, Chap. 8 will discuss an application where the focus is more on the
dialogue than on the construction of domain models. This application, the
Ypa directory enquiry system, accesses a document collection that consists of
classified advertisements.

6.1 Indexing Web Pages

As we have seen, classifications have been built, some of them impressively
large, and they do work fine in either domain-independent context with lots of
data to index (such as the Web) or in specialized applications with manually
tailored classifications. But the semantic content of a document collection

1Portions reprinted, with permission, from U. Kruschwitz. An Adaptable Search Systems
for Collections of Partially Structured Documents. IEEE Intelligent Systems, 18(4):44-52,
July/August 2003, and from U. Kruschwitz. Automatically Acquired Domain Knowledge for
ad hoc Search: Evaluation Results. In Proceedings of NLP-KE’03, pages 525-532, 2003. ©c
2003 IEEE.

2http://www.essex.ac.uk/
3http://news.bbc.co.uk/

6 UKSearch - Intelligent Web Search 95

can vary; it may be very domain-dependent with no classifications ready to
hand. It may change over time, and the amount of data may not allow a
reliable classification. In these cases a structure constructed from the actual
data seems more desirable.

We can identify a variety of structures in a collection of Web documents
that could serve as a basis for extracting concepts and building a domain
model as outlined earlier: internal document structure (HTML tags), link
structure (hyperlinks), directory structure (the way documents are stored).
We only use the internal document structure.

For Web pages we distinguish six types of frequently used markup contexts
where candidate keywords can occur:

• meta information
• document headings
• document titles
• anchor text
• emphasized parts of the document
• any other text in the document.

Each of the (first five) contexts is identified by corresponding HTML tags.
The details will be discussed later. Concepts are extracted based on just the
first five contexts. This means that we ignore free text completely which re-
duces the size of the index tables significantly.

As a reminder, it should be emphasized that using meta tags only to
identify concepts seems like a sensible alternative to our approach assuming
the documents are in HTML format. For a classification task it was found
that documents can be classified most accurately entirely based on meta tags
[121]. However, only 26% of all documents in the Essex domain contain these
tags, a figure similar to the one reported in [121].

Once the concepts have been selected, the construction of the domain
models works as outlined in Sect. 3.5 (that section also gives examples of
concept hierarchies for the Essex domain).

This all sounds like a very simplistic approach. But this simplicity allows
us to rapidly construct new domain models and apply them without the need
of any customization. There is however scope for incorporating even more
structural information. So before we discuss the actual UKSearch system in
Sect. 6.2, we will look at the potential that the existing document structure
offers in terms of dialogue-based search.

The fact that in the current implementation we ignore all structure other
than those few markup contexts does not mean that other contextual informa-
tion cannot be incorporated in the indexing and search process for the given
scenario. For example, relations between documents (e.g. via hyperlinks) can
be considered to be expressing a relation between the concepts found in each
of those documents. Furthermore, we could build some classification structure
by associating entire directories with concepts found in the documents that
are stored in those directories. To illustrate this, we will pick some actual

96 INTELLIGENT DOCUMENT RETRIEVAL

/about/index.html

/about

/about/find.html

bus
mile, kilometre, kilometre_mile,

travel, search, review, guide

/about/guide.htm

square, campus, map, travel

square, campus, map, travel

©c 2001 IEEE

Fig. 6.1. Most frequent keywords

(though simplified) example using documents found on the Web server of the
University of Essex.

A page entitled About the University of Essex4x gives an overview of the
University and has hyperlinks to two other files in the same directory: Travel
information5 and Campus guide: finding your way around6dd . Figure 6.1 shows
what we obtain if we select the four most frequent keywords in the documents
(ignoring stopwords which include the most frequently occurring nouns in
the domain such as university, colchester, essex). The keywords selected for
the whole directory (/about) are the most frequent keywords in all three
documents.

This can be compared to the indexes that were selected applying our con-
cept approach shown in Fig. 6.2. The figure indicates that the number of con-
cepts we can extract for each document varies a lot (e.g. only a single concept
could be identified in document /about/index.html). The terms associated

4http://www.essex.ac.uk/about/index.html
5http://www.essex.ac.uk/about/find.html
6http://www.essex.ac.uk/about/guide.htm

About the University of Essex

Campus guide: finding your way around

6 UKSearch - Intelligent Web Search 97

/about/index.html

/about

/about/find.html

/about/guide.htm

administration, travel, campus,

visitor, train, travel_visitor ...

area

travel, train, road, bus

campus, administration, staff,
research, institute, department ...

©c 2001 IEEE

Fig. 6.2. Selected concepts

with the directory /about are the most frequent concepts selected for all the
files listed in the directory.

Most strikingly, this demonstrates how frequent words are not necessarily
the most desirable choices for a query system: the words square and kilometre
are two examples which we rather do not want to see identified as significant
terms (at least in this context). But we cannot simply add these terms to a
list of stopwords to avoid them being selected, because they are not frequent
enough in the document collection.

As indicated earlier, we do not use all of the available link structure in the
prototype, and the example merely shows what additional structure could be
incorporated in the knowledge extraction process. The Ypa system discussed
in Chap. 8 incorporates more structural information than the UKSearch sys-
tem.

98 INTELLIGENT DOCUMENT RETRIEVAL

6.2 The UKSearch System

UKSearch7 is an implemented prototype of a dialogue-based search engine
that assists a user searching a Web collection. Its architecture is inspired by
a number of observations. One of them is the fact that sophisticated search
engines like Google have proven to work well on huge amounts of data. But
even for smaller domains this technology will nicely handle a large proportion
of the user queries. In the Essex domain a user who wants information about
“Computer Science” will most likely be happy with the homepage of the
Department of Computer Science, even though there are hundreds of pages
matching the query; or to use the “union” example yet again, the most relevant
matches (information about the students union in our domain) will probably
be ranked highest in a list of matches if a good standard search engine is being
used. In both examples the user will not be interested in entering a dialogue
that constrains the query. It would be best to just display the results of the
standard search engine.

To summarize, the main observations that influenced the design of UK-
Search are:

• Sophisticated search engines without any dialogue component are sufficient
for a large number of queries.

• Queries submitted to a Web search engine are usually very short (less than
two words on average in the Essex sample domain).

• The majority of queries results in a large set of matching documents even
in small domains.

The last two of those observations strongly support the use of a dialogue
component. The very first point suggests the use of a standard search engine.

As a consequence, our approach does not aim at abandoning established
search technology but at dealing with the remaining percentage of queries that
cannot be handled in the straightforward fashion just outlined. The solution
is sketched in Fig. 6.3. We combine two systems by passing the user query to
the standard search engine (which does not have to be installed locally) and
to the UKSearch system in parallel and merge both results (in fact, UKSearch
calls the search engine through a defined interface). As soon as the standard
search is finished, the top ranked results can be displayed. UKSearch runs
the query against the domain model, and the dialogue manager constructs
potential choices which are then presented alongside the matches returned by
the search engine. In the “union” example that would mean that most user
requests can be satisfied by a single search engine call. But if the expected
documents are not among the most highly ranked ones, the user can select
a potential choice (e.g. pick a query refinement term) to constrain the query
(e.g. select trade union). Obviously, we will only incorporate an external rather

7UKSearch is short for “Udo Kruschwitz Search” and has nothing to do with other systems
bearing the same name.

6 UKSearch - Intelligent Web Search 99

Web ServerUser Machine

Interface
Browser

UKSearch

Engine

Search

Standard

Local Server

uks_client uks_server

©c 2003 IEEE

Fig. 6.3. Sketch of information flow in UKSearch

than a locally installed search engine if this search engine indexes more or less
the same set of local documents that we use to build the domain model. For
a publicly accessible Web site that should certainly be the case. If we are
looking at an intranet, then we would consider installing a standard search
engine locally.

The outlined system has a number of significant advantages over alterna-
tive ways of presenting choices for query modification. First of all, the initial
response time is determined by the search engine technology that has been
chosen. Secondly, the exploitation of structure found in the documents will
only be needed if the standard search results are not satisfactory. Thirdly, this
approach is significantly different from existing search engines that either use
hand-crafted knowledge sources or rely on clustering methods on the fly.

The main component of UKSearch is an instance of the dialogue manager
defined in Sect. 5.6. It is domain-independent, but is equipped with a set of
interfaces to access:

• a domain model as defined in Sect. 3.5
• a standard search engine
• additional knowledge sources such as WordNet.

On top of the dialogue manager sits a graphical user interface for the
interaction between user and system via a Web browser.

The customization for the two sample domains is identical apart from
minor differences which are specified in the appropriate sections.

100 INTELLIGENT DOCUMENT RETRIEVAL

6.2.1 Indexing and Model Construction

The actual implementation of the indexing and model construction steps for
the two sample domains are described here. Some implementational issues
have already been outlined in Sect. 3.7. We define five different markup con-
texts: Meta, Headings, Titles, Anchor, Bold. The raw text for each of the spec-
ified markup contexts is selected at crawl time based on appropriate HTML
tags. All tags are turned into a normalized form (small letters) prior to the
extraction process. The text snippets that are then passed on to the indexing
components are identified as follows:

• Meta: all text that is supplied as a value to the content attribute in the
<meta> tags, given the content attribute is accompanied by an attribute
name or http-equiv and the corresponding value matches the pattern
/keyword/ or /description/

• Headings: all text that is marked using one of the heading tags (<h1> ...
<h6>)

• Titles: all text that is marked using the <title> tag
• Anchor: all text that is marked using the <a> tag
• Bold: all text that is marked using the , <i>, <u>, , <big>

tags.

The indexing step processes the text according to the guidelines listed in
Sect. 3.7, and each index term is associated with the document it was found
in. An alternative approach would be to associate the anchor text with the
document that the anchor points at. Two other possible modifications are to
record font changes as some sort of markup (e.g. using the tags) and
to distinguish more markup contexts by not collapsing different HTML tags
into a single context (e.g. see the definition of the Bold context). Doing this
one may well distinguish 10 or 20 different contexts.

Two types of concepts are extracted from the index database: concepts of
type 2 (type-2 concepts) and concepts of type 3 (type-3 concepts). Remember
that type-2 concepts are those index terms that have been found in at least
2 different markup contexts within some document. By definition, any type-3
concept is also a type-2 concept.

The next step is the automatic construction of a domain model. We build
a single model that incorporates both type-2 and type-3 concepts using a
back-off strategy that always consults type-3 concepts before backing off to
type-2 concepts if necessary. Section 3.5 contains a detailed description of the
construction algorithm. The implementation modifies that process as follows:

• We create a root node for each concept of type 2 and type 3. This implies
we construct as many hierarchies as there are concepts, although these
hierarchies may turn out to be trivial, i.e. contain a root node only.

• We restrict the maximum number of branches in each node to a fixed
number max. If there are more than max branches leaving a node, we

6 UKSearch - Intelligent Web Search 101

select those max daughter nodes whose corresponding queries match the
highest number of documents. We use max = 20.

• We restrict the minimum number of branches in each node to a fixed
number min. If there are less than min branches leaving a node, we discard
all of those branches. We build models using min = 5. This needs some
explanation. The question is, why do we use a minimum threshold at all?
The answer is that we would like to be able to suggest more than just one
or two query refinement options if we can suggest any at all. In fact, we
only require a minimum number of branches to be constructed as long as
we still have some back-off options. If we end up in the very last stage
of this back-off construction process, then we drop the requirement of a
minimum number of branches.

• The back-off approach is used in step 2 of the algorithm in Sect. 3.5. For
each node in the hierarchy we try to construct branches according to the
algorithm using the concept type n = 3, i.e. every paths from the root to
each of the daughter nodes of the current node are constructed based on
type-3 concepts. If this method results in less than min branches leaving
the node, we discard them and back off to concept type n = 2. This back-
off step does not affect any of the branches created in earlier steps.

• The model construction process is driven by matching queries against the
document collection. We did not specify how we would determine whether
a document matches a query represented by a set of concepts. Here we
apply a straightforward matching function: a document matches a query
if all the query terms were found to be concepts in the document. In other
words, the matching function match that matches sets of concepts C (i.e.
a query) to documents is defined as follows:

match(C) = {d|∀c ∈ C concept(c, d)}
• Each arc in a concept hierarchy is to be assigned a weight. This weight will

allow us to rank options presented to the user. In the model construction
process this weight allows us to decide which branches should be encoded
in the hierarchy and which ones should be discarded. The underlying as-
sumption in our construction process is to include more frequent in favour
of less frequent concepts in the domain model. We therefore rank branches
in a concept hierarchy according to the number of matches each of the
nodes represents. The weight for each arc is then calculated as a ratio
|match(C1)|
|match(C2)| where C1 is the query representing the daughter node and C2CC

is the query representing the mother node. So if we have to consider a
large number of possible daughter nodes, we will discard all those poten-
tial nodes that would lead to very few matches (i.e. very specific queries)
since we restrict the number of branches leaving a node to max = 20.

• One more thing: we consider noun phrases to be much better in conveying
meaning to the user than single nouns, which is why the back-off strat-
egy involves another sub-step. We first try to create branches for noun

102 INTELLIGENT DOCUMENT RETRIEVAL

phrases of a particular concept type (applying the same thresholds max
and min), otherwise we consult all concepts of that type. The idea of using
compounds (noun compounds in particular) as potential query refinement
terms in ad hoc search tasks is not new. Anick gives a detailed motivation
(including references to related work) for his work on context-based infor-
mation retrieval which adopts “the noun compound as the primary unit
of interactive terminological feedback” [8].

The thresholds max and min were chosen in the light of the application:
these values represent the number of refinement choices to be supplied by the
domain model for a given query.

We also restrict the depth of the domain models to a maximum path length
of 2. The reasons are twofold. One reason is efficiency, i.e. the construction of
a bigger model requires substantially more time and resources. But the more
intuitive reason is that based on the user studies referenced in the chapter on
related work we expect that a user will typically not navigate further down
than two levels. And even if that was the case, then the small set of branches
on the next level can quickly be constructed on the fly applying the same
techniques, assuming that the system has access to the appropriate index
tables.

For the BBC domain we treat the most frequently occurring concepts as
stopwords. This excludes about 100 very frequent concepts. For the Essex
domain we do not define any such stopwords.

6.2.2 Dialogue Strategy

UKSearch’s dialogue manager is an implementation of the system outlined in
Sect. 5.6. Here we demonstrate how each of the parts of the dialogue manager
is set up.

Properties

Due to the choice of domain model and system setup we have only a single
document property called keyword that typically takes a set of keywords as
its value. We say “typically”, because apart from representing a conjunction
of query terms we can also represent disjunctions of conjunctions (see the
example further down).

Since we do not allow the user to set any system parameters and because
the search engine and domain model are completely separate components we
do not consider any system properties.

That leads to an extremely simple goal description which consists of a
single attribute-value pair that expresses that a document matches a set of
terms. An example representation of the user query “union” as a goal descrip-
tion Goal would be:

Goal = [keyword({union})]

6 UKSearch - Intelligent Web Search 103

The value of the keyword attribute is updated accordingly in query modifi-
cation steps by adding, deleting or replacing terms. For example, a user might
have selected one of the options proposed by UKSearch such as “Add the term
trade union to the query”. The new goal description would then look like this:

Goal = [keyword({union, trade_union})]

If however, we want to represent a disjunction such as “union OR euro-
pean union representative”, then the corresponding goal description looks as
follows:

Goal = [keyword({{union}, {european_union_representative}})]

For the representation we assume a normalized format. Any query term is
transformed into small letters. Typographical characters are deleted. Double
quotes in the user input are not deleted. They indicate that a sequence of
words should be treated as a phrase rather than a list of individual words.
This idea follows the convention of the use of double quotes in standard search
engines.

The default search engine in UKSearch is Google which provides an API8

to incorporate Google’s results in applications. However, any other search en-
gine that has access to the document collection and that provides an interface
could be used. The translation of the goal description into a user query (i.e.
a Google request) is a straightforward processing step that follows the input
format required by Google’s API.

Dialogue Setup

The input is either user typed text or a selection of a tick box that is associated
with a potential choice offered by the dialogue system.

The dialogue history contains the last query. This structure is currently
not exploited in the UKSearch system. It may well be used in the future.
It could be applied to avoid presenting exactly the same query modification
options twice in a search task.

The currentquery function turns a goal description into a search engine
call that contains all the keywords as a flat list of query terms (this list
may however contain conjunctions or disjunctions). Such a search engine call
encodes specific information about the domain to be searched in case the
search engine is not locally installed.

The retrieve function matches a query to the results returned by Google
(we treat these results as a ranked list of matches).

The only notable dialogue state is the Display state. The dialogue manager
moves into one of two other states (Start state or Meta state), if the user
requests to restart the dialogue or asks for help. The input parser detects
such requests (based on pattern matching) and passes this information to the
dialogue manager.

8http://www.google.com/apis

104 INTELLIGENT DOCUMENT RETRIEVAL

Dialogue Function

The dialogue function trans which maps a dialogue state and the user input
to a new dialogue state is very simple:

• If the user types an input, then the goal description is updated accordingly
by adding the new input term(s) to the query term(s) already encoded.
The new dialogue state is calculated by selecting potential choices for the
new goal description (see below) and applying the necessary query and
retrieve functions.
However, if the input parser interprets the input as a “correction”, then
the goal description is updated by substituting the new input term(s) for
the query term(s) currently held in the goal description. An example of
such a user input is “No, I want the accommodation office”.

• If the user selects a potential choice < Goal, Hist, Input >, then Goal is
the new goal description. The rest of the new dialogue state is calculated
as above. Note that the user just ticks a box/hyperlink, but the system in-
terprets this as if the user has performed some query modification encoded
by the value of Input in the potential choice.

If the input parser detects a request for help (e.g. “Help”), then the dia-
logue will move into the Meta state. The goal description remains unchanged,
but the user will be given more detailed feedback about the options currently
available. Any input in the Meta state is handled in the same way as it would
have been handled before moving into this state.

Calculation of Potential Choices

Whenever potential choices need to be constructed (i.e. whenever the dialogue
function is called), we perform these steps:

• Calculate query refinements
• Calculate query relaxations
• Rank all query modifications
• Select the highest ranked query modifications and construct potential

choices.

Since we have uncoupled the domain model from the actual database of
documents, the dialogue manager does not actually keep track of what the
search engine returns. In other words, in any case we calculate relaxation as
well as refinement options.

We apply the domain model to explore a fairly restricted space of query
modifications. This is because the domain model is custom-built for exactly
this process, i.e. finding refinement or relaxation terms for a given query. There
is no need to go deep into a hierarchy, nor are we interested in exploring sets
of nodes that are not immediate neighbours in such a hierarchy.

We shall first outline how refinements and relaxations are constructed
based on the domain model. We will then describe this process more formally.

6 UKSearch - Intelligent Web Search 105

• Query refinements are calculated by proposing a single concept that could
be added to the current query. Since the domain model hierarchies repre-
sent (hypothetical) query refinement steps, we just have to find a coherent
path that takes us from the root node further down in a hierarchy, and
on that way we collect all the current query terms (and do not skip any
nodes). Following the last node on this path we have the nodes that contain
query refinement terms.

• Query relaxations are constructed by either breaking the current query
into parts (i.e. by deleting query terms) or by substituting the query by
a single concept. This single concept has to be found in the root node of
a concept hierarchy, and all query terms are found in the direct daughter
nodes of that root node.

To express that more explicitly, we assume the current goal description is
represented by a set of concepts C. Then we construct query modifications as
follows:

• Query refinements are constructed by the addition of a single concept r to
the current query for every hierarchy h with root node root so that r is a
potential query refinement term for C in h (i.e. there is a node n such that
path(root, n, h) with r ∈ n and for every c1 ∈ C there is a node n1 on this
path such that c1 ∈ n1) and we also require that for every node n2 on this
path there is a c2 ∈ C such that c2 ∈ n2.

• Query relaxations are constructed by replacing the current query by a
single concept r for every hierarchy h with root node root so that r is a
potential query relaxation term for C in h and:

r ∈ root ∧ ∀c ∈ C ∃n c ∈ n ∧ path(root, n, h) ∧ |path(root, n, h)| = 1

Every goal description represented by a single query term is also treated
as a potential query relaxation (see the example in Fig. 1.5).

The definitions of potential query refinement term and potential query re-
laxation term (Definitions 3.10 and 3.12 in Sect. 3.6) are more general than the
conditions outlined here. Basically, we only consider concepts that are most
closely related to the set of query terms. Furthermore, we treat each node in
the domain model as if it only contained one concept (we pick the first one).
Alternatively, we could add all concepts found in a node as depicted in Fig.
6.9 (discussed further down).

The function choicerank ranks all query modifications that have been
considered as potential choices. The highest ranked choices are presented to
the user (we use a maximum number max = 20).

The actual function uses the weights found in the concept hierarchies. The
aim is to select those options that retrieve the highest number of matches.
Note that these numbers are based on the data set that was used to build the
model and that this does not involve any database calls.

106 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 6.4. UKSearch: query relaxation

Our ranking function ignores all query relaxations if there are potential
query refinements. This is based on the observation that too general queries
are much more likely than too specific queries (to be discussed as part of the
log analysis in Sect. 7.1). An example of a query relaxation step initiated by
the system in which the query is simply broken into individual terms can be
seen in Fig. 6.4 where a user asked for “iraq government political figures before
invasion” in the BBC News domain.

If the domain model cannot deliver any refinement options, then we imitate
the domain model construction process with the query terms dynamically. In
other words, we try to locate concepts that are related to all query terms
and construct the most highly ranked choices. The motivation here is that

6 UKSearch - Intelligent Web Search 107

there may as well be sensible options which have not found their way into
the domain model. Remember that we try to keep the size of the model
manageable. The trade-off of not calculating all possible links in the model
is that certain branches will not turn up in the domain model at all. Those
can however be constructed on the fly as long as UKSearch has access to the
index tables needed for the model construction.

In addition to that we also filter the new terms that will be used for
query modifications in a way that only the longest possible query terms are
considered and all substrings are ignored. We want to avoid a user having to
choose between chancellor gerhard schröder¨ and gerhard schröder¨ . We discard
the second one if both terms were found to be possible refinement options.
This seems a sensible strategy although a query for “dow” in our BBC News
domain will then not include a refinement term dow jonesj which is discarded
in favour of dow jonesj milestones.

The potential choices are then passed to the dialogue manager to be en-
coded in the new dialogue state. It has already been mentioned that the user
just has to tick a box (or a hyperlink), and behind the scenes the query is
updated accordingly. On the screen the user will find information about what
type of query refinement a box represents.

A final word about query refinement terms: a user may choose to add such
a term to the original query, but a user may also choose to replace the entire
query by the suggested term (similar to AltaVista’s Prisma refinement tool
[7]). This is to make the search system more user-friendly and to allow the
user to explore the document collection rather than strictly narrow down a
particular search request.

6.3 Sample Domain 1: Essex University

The first domain that we have chosen for the UKSearch Web search system
is the Web site of the University of Essex (Fig. 6.5 shows the starting page
of the online search system). Apart from its size and accessibility there is one
main reason that makes this domain a suitable one. Log files for the locally
installed search engine have been made available which allowed us to perform
technical evaluation steps based on real data.

Figure 6.6 is a screenshot of the UKSearch system that shows the most
highly ranked potential choices presented to a user following a user query
“union” (terms that can either be added to the query or replace the original
query altogether). We have seen this screenshot before in the introductory
chapter.

We want to present some statistics to demonstrate the amount of data
extracted and indexed. In the University of Essex domain we currently index
about 38,000 Web pages, which are all HTML or ASCII pages accessible from
the starting page presuming the robot exclusion files do not prevent robots
to crawl them. We exclude certain directories that contain enormous amounts

108 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 6.5. UKSearch: user interface

of documentation (such as Java manuals). Those documents have restricted
access rights and are not accessible from outside the university anyway.

6.3.1 Index Tables

Table 6.1 contains some statistics for the Essex domain.
Table 6.2 is an overview of how many concepts and keywords we find on

average for a Web page in the sample domain. It also contains figures about
what percentage of pages contains concepts at all.

We also want to give a list of some selected concepts (the first five in the
alphabet and some other examples refered to in the text) that were found
in the Web pages of our sample domain. Table 6.3 is a short summary. The
table contains information for each one of the selected concepts about how
many related concepts were found in total, in how many documents in the
collection the term was identified as a concept, and (as a comparison) in

6 UKSearch - Intelligent Web Search 109

Fig. 6.6. UKSearch: system’s response following a user query

how many documents this term was identified as a simple keyword, i.e. not
necessarily as a concept.

6.3.2 Domain Model

Table 6.4 characterizes the domain model (remember the maximum depth
of 2). Non-trivial models are models with more than one node (i.e. not just
the root node). It may be surprising to find a fairly large number of trivial
models. This does not mean that these models actually contain only a single
concept in the root node (this would be a bit strange considering that there
are not many concepts without any related concepts). However, it is common
to find groups of related concepts in the root node (e.g. the example of concept
isabelle that we have refered to a few times: there is a concept hierarchy that
consists of a root node only, a root node that contains the concepts isabelle,
proof,ff theorem prover and theorem).

110 INTELLIGENT DOCUMENT RETRIEVAL

Table 6.1. Some statistics describing the University of Essex domain

Number

Indexed Pages 37,561

Distinct keywords in bold context 85,960

Distinct keywords in title context 11,398

Distinct keywords in anchor context 56,042

Distinct keywords in meta context 6,725

Distinct keywords in headings context 31,141

Distinct type-3 concepts 3,205

Distinct type-2 concepts 14,587

Pairs of related type-3 concepts 39,314

Pairs of related type-2 concepts 2,385,944

Percentage of concepts with related type-3 concepts 92.1%

Percentage of concepts with related type-2 concepts 98.6%

Table 6.2. Page statistics of the University of Essex domain

Average number of keywords per page (in any of the five contexts) 71

Average number of type-3 concepts per page 1.6

Average number of type-2 concepts per page 6.8

Percentage of pages with type-3 concepts 46.1%

Percentage of pages with type-2 concepts 88.6%

©c 2003 IEEE

Table 6.3. Concept examples in the University of Essex domain

Concept Related Documents Documents
Concepts with concept with keyword

aave 20 2 33

abbreviations 16 4 53

abdala 1 1 67

abdel 5 3 33

abdel salhi 3 2 9

...

language 825 303 2,518

...

union 163 140 1,589

...

If we applied a different matching function in the domain model construc-
tion process - one that matches query terms against any keyword found in the
documents instead of concept matches only - we would get far fewer trivial

6 UKSearch - Intelligent Web Search 111

Table 6.4. Domain model statistics for the University of Essex domain

Number of hierarchies 14,587

Average number of branches leaving root node (non-trivial models) 8.2

Average number of leaf nodes (non-trivial models) 37.4

Percentage of hierarchies with root node only 46%

hierarchies. It would however also mean that we had to deal with a much
larger database in the model construction process.

If we only look at those hierarchies which have type-3 concepts as root
nodes, we get the breakdown in Table 6.5.

Table 6.5. Domain model statistics for the University of Essex domain (root nodes
are type-3 concepts)

Number of hierarchies 3,205

Average number of branches leaving root node (non-trivial models) 9.0

Average number of leaf nodes (non-trivial models) 44.8

Percentage of hierarchies with root node only 22%

6.3.3 Concepts vs. Real User Queries

In the introductory chapter we assumed that the concepts extracted in the
domain model construction process are likely to be among those terms that
users submit as real queries when they search the document collection. The
log files of queries submitted to the University of Essex search engine prove
that this is indeed a sensible assumption.

These log files - recording all queries over a period of several months -
reveal that 74% of the top 100 most frequently submitted queries match our
definition of a concept (i.e. there are documents which contain these terms in
more than one markup context), either single terms or compounds. Note that
the top 100 most frequently submitted queries make up about a quarter of
the entire query corpus although they constitute less than 1% of all unique
queries. For an average query (i.e. not just one of the 100 most frequent ones)
we get a 41% chance that the query matches a concept. These figures are based
on exact matches only. If we apply base form reduction, stemming or partial
matching of queries against concepts the overlap is higher (for example, of all
the unique single terms that are found in the top 100 queries, about 89% are
actually concepts, and for the average query this figure is 72%).

For the same sample domain we also compared the terms that we identified
as concepts with terms found in the meta tags of the documents (the markup
environment that allows authors of HTML documents to provide keywords

112 INTELLIGENT DOCUMENT RETRIEVAL

and topics describing a document’s content). We established that a query
term is more likely to be extracted as a concept than listed as a keyword in
the meta tag environment. The figure of 89% given above compares to 80%
using meta tags, and the 72% chance of an average query term matching a
concept compares to 58% matching a word in the meta tags in our domain. The
significance of this observation is that a domain model which relies entirely
on keywords placed by authors in the meta tags will be lacking a number of
terms typically submitted in user queries.

6.4 Sample Domain 2: BBC News

The second domain that we have chosen is the BBC News Web site. The
aim was to find a domain that is significantly different from the first sample
domain without having to invest into additional resources or worry about
language-specific tools (i.e. the part-of-speech tagger). The UKSearch system
would then be run on the new domain without modification.

The BBC News site was found to be suitable because it is a non-academic
site representing a much larger collection of documents which nevertheless can
be processed using the existing tools. Most importantly, there is no restriction
imposed to an automatic crawler (as stated in the robot exclusion file of the
site). Furthermore, the terms and conditions for academic purposes permit
the use of material for educational purposes.

It should be stressed, that this domain is particularly interesting since it
contains breaking news articles alongside archived documents. That makes
the document collection changing very fast and the content very domain-
specific. It also means, that the domain models resulting from the collection
are much more unpredictable than in our first sample domain. Whereas one
could imagine to handcraft a domain model or some sort of ontology for the
Essex Web site, it appears much more difficult to do that for the BBC News
domain and make sure that this model is kept up-to-date. This is the type of
document collection for which the model construction methods presented in
this book seem most promising.

Using the same setup as for the Essex domain it is possible to build a
domain model in exactly the same way.

Figure 6.7 displays the system’s response to the user query “union” in this
domain. This version of UKSearch provides two input fields, one to modify
the current query and another one to start a new search.

Now have a look at Fig. 6.8 to get an idea of what sort of relations the
domain model encodes in a news domain. We were interested in information
about the political figures in Ukraine, but unfortunately had problems getting
the names spelled right. So we queried for “ukraine” and can then just replace
the query by the appropriate name.

Figure 6.9 is another example screenshot of a query submitted in this do-
main (here we use the simplified version of UKSearch). This is a good example

6 UKSearch - Intelligent Web Search 113

Fig. 6.7. UKSearch: system’s response to the user query “union”

to explain how we can treat domain model nodes that contain more than one
concept. If a refinement consists of more than a single term (i.e. the appropri-
ate node in the hierarchy contains more than a single concept), then all terms
could be added to the current query. Figure 6.9 is an example. The example
query submitted by the user was “concorde crash”. The domain model con-
struction process identified a concept concorde crash. Therefore, UKSearch
treats the query as a phrase. A hierarchy with concept concorde crash in the
root node was built in the offline construction process. The three branches
with the highest weight connect the root with nodes that each contain a sin-
gle concept. The fourth branch however connects the root with a node that
contains three concepts. The explanation of this is that whenever the index
term concorde crash was found to be a concept in a document, then this
document contained either all three related concepts relatives, lawyers and
concorde cash or none. There are a number of pages matching these concepts,
one of them entitled “Relatives accept Concorde cash”, another one “Lawyers
back Concorde cash deal”.

114 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 6.8. UKSearch: system’s response to the user query “ukraine”

Some notable differences detected in this domain compared to the Essex
domain are:

• The structure of the document collection as well as the internal document
structure is much more consistent throughout the collection. This is a fairly
obvious observation.

• Meta tags are used much more frequently.
• Much less use of heading tags is being made, but significantly more text

is encoded as anchor text.
• A comprehensive stopword list for this domain would include rubric names

and names of correspondents, words that are very frequent in the lists of
concepts.

Due to hardware restrictions we only collected the first 50,000 pages (of
several hundred thousand in total) that have been found by starting at the
top level page of this domain. The domain models were built based on this
selection.

6 UKSearch - Intelligent Web Search 115

Fig. 6.9. UKSearch: query refinement using more than one concept

Note that the actual number of pages in the statistics is slightly lower than
50,000, because not all of the crawled pages turned out to be text (despite the
exclusion of certain file types and file name patterns at crawl time).

6.4.1 Index Tables

Table 6.6 contains statistics for the BBC News domain. Most notable is the
fact that there are almost no type-3 concepts (and only a single type-2 con-
cept) which have no related concepts of the same type. Apart from that, there
is generally much more markup used in this domain.

In terms of selected concepts and keywords for every single document we
get the picture in Table 6.7. Note the differences compared to the Essex figures
in Table 6.2.

116 INTELLIGENT DOCUMENT RETRIEVAL

Table 6.6. Some statistics describing the BBC News domain

Number

Indexed Pages 48,535

Distinct keywords in bold context 101,445

Distinct keywords in title context 34,569

Distinct keywords in anchor context 130,656

Distinct keywords in meta context 58,408

Distinct keywords in headings context 8,991

Distinct type-3 concepts 13,138

Distinct type-2 concepts 34,391

Pairs of related type-3 concepts 273,776

Pairs of related type-2 concepts 2,302,828

Percentage of concepts with related type-3 concepts 99.6%

Percentage of concepts with related type-2 concepts 100%

Table 6.7. Page statistics of the BBC News domain

Average number of keywords per page (in any of the five contexts) 163

Average number of type-3 concepts per page 4.9

Average number of type-2 concepts per page 13.9

Percentage of pages with type-3 concepts 94.7%

Percentage of pages with type-2 concepts 99.5%

©c 2003 IEEE

6.4.2 Domain Model

We also want to present some domain model statistics here so that we have
a comparison between the domain models in each of our two sample domains
(cf. the tables in Sect. 6.3 for the Essex domain). If we look at all the concepts
in the model identified for the BBC News domain (i.e. type-2 and type-3), we
get the figures in Table 6.8.

Table 6.9 tells us how those figures look like when we only consider those
hierarchies which have type-3 concepts as root nodes.

Table 6.8. Domain model statistics for the BBC News domain

Number of hierarchies 34,391

Average number of branches leaving root node (non-trivial models) 4.6

Average number of leaf nodes (non-trivial models) 10.2

Percentage of hierarchies with root node only 55%

©c 2003 IEEE

6 UKSearch - Intelligent Web Search 117

Table 6.9. Domain model statistics for the BBC News domain (root nodes are
type-3 concepts)

Number of hierarchies 13,138

Average number of branches leaving root node (non-trivial models) 6.0

Average number of leaf nodes (non-trivial models) 15.0

Percentage of hierarchies with root node only 27%

6.4.3 Adjusted Dialogue Strategy

In our first document collection, the Essex Web site, we could assume that
the domain model we constructed would be relatively stable. However, as
we pointed out already the BBC News domain represents a rapidly changing
collection. But if we just construct the model once and then apply it, we will
end up with a rather static knowledge source that will be out-of-date after
some time unless we re-run the construction process.

What we do is we adjust the dialogue strategy for this type of document
collections by combining the query refinement suggestions derived from the
domain model (as explained earlier) with query refinement terms extracted
on the fly from the documents that match a user query, and those terms are
presented alongside each other.

For the extraction of knowledge on the fly we use the titles and snippets of
the best matching documents as they are returned by the search engine and
process this text in the same way as we process the document collection prior
to deriving the domain model. That means we assign parts of speech, select
nouns and certain noun phrases. Finally we select the most frequent ones
and mix them with the refinement terms suggested by the domain model.
We display up to 10 terms derived from the domain model followed by the
10 most frequent ones calculated on the fly. The output looks exactly like
what we have seen in the Essex domain, i.e. the output format does not differ
from a system that only uses the domain model for the construction of query
modification terms.

Figure 6.10 depicts the data flow in this system setup which is not dramat-
ically different from what we saw earlier in Fig. 6.3 apart from the fact that
query modification suggestions are now also derived from the best matching
documents returned by the search engine following a user query.

6.5 Implementational Issues

We want to conclude this chapter with a discussion of some technical aspects
of the UKSearch system.

It has already been pointed out that both domains that we discussed use
basically the same setup, in particular the domain model construction process

118 INTELLIGENT DOCUMENT RETRIEVAL

(Domain Model)
UKSearch Backend

UKSearch Server

Extract
Terms

Results
&

Extract
Concepts

Search Engine

GUI Dialogue Manager

Network

Fig. 6.10. Sketch of information flow in UKSearch (BBC News setup)

is almost identical. We also highlighted some differences in the dialogue strat-
egy.

The gathering robot starts at some root point and collects in a breadth-
first strategy all relevant Web pages that can be found. It currently ignores
all documents that are not in HTML format or located in a different domain.
The gathered documents are passed to the indexing component.

The robot as well as most of the index construction programming is done
in Perl making use of existing modules (LWP, HTML, URI, Text etc.). For
the indexing process we also use the Brill tagger [18].

The Porter stemmer [122] is an optional part of the system. The system
administrator would have to decide whether it should be applied or not since
the indexing and the query processing steps would ideally apply the same
tools. Other resources would have to be applied for languages other than
English. An anecdotal note about the stemmer: while there are a number of
implementations of the Porter stemmer available, they all seem to interpret
the algorithm somehow differently. Just one example is the word artificial
which is supposed to be stemmed to artifici. The Perl modules Text::English
or Lingua::Stem return artificy and artificial, respectively. We decided to apply
the C and Perl implementations provided by Porter himself.9

The Web-based online dialogue system runs as a Sicstus Prolog executable
accessed via sockets. Perl scripts pass the user requests from the browser to
the Sicstus system and return the answer once the system is finished. This
setup permits the handling of multiple user requests which are pipelined. It
is possible to run several instances of the Sicstus system which all access the
same database. In that case the Perl script responsible for contacting the
Sicstus system will also work as a multiplexer. The external databases we are
using are mSQL and Oracle.

9http://www.tartarus.org/ ˜ martin/PorterStemmer/

6 UKSearch - Intelligent Web Search 119

There is now an alternative implementation which is purely Java-based.aa
The generic interfaces in that new system allow access to MySQL as a database
system and the open source search engine Nutch10.

The system was initially in parts based on the Ypa and subsequently
reimplemented.

Our platform is a Sun Blade 150 with 640 MB working memory running
Solaris 8. It performs each of the crawling, indexing, uploading and model
construction steps in a matter of hours.

Our choice of sample domains was justified earlier. However, other than
for the reasons given earlier these are arbitrary choices and the techniques
should be similarly applicable to other domains. In fact, we did apply the
same techniques to a number of other sample Web sites to verify that no
manual modification (other than the definition of a start page and the domain
name) would be necessary. Example sites that we indexed are the University
of Edinburgh, the University of Sheffield and the University of Brighton sites.

An interesting aspect is that the domain models for the universities can
differ quite dramatically. If we look at the screenshot in Fig. 6.11, we see
that a user searching for “language” in the University of Brighton domain
will get a large number of very technical query modification suggestions such
as object oriented language, common lisp and assembly language. This is very
different from the Essex domain which is heavily biased towards documents
about language and linguistics.

10http://www.nutch.org

120 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 6.11. UKSearch: system’s response to the user query “language” (Brighton)

7

UKSearch - Evaluation and Discussion

How do we evaluate a hybrid system such as UKSearch? Clearly, simply as-
sessing precision and recall would be misleading. This would partly be an
evaluation of the search engine we incorporate. What needs to be investigated
is the quality of the query modification options that are calculated based on
the concepts encoded in the domain model. We have performed a number of
experiments ranging from a log file analysis to task-based evaluations. We will
give a detailed account of these experiments and discuss the results. There
are four experiments in total which we want to discuss here:

• We shall first look at a technical investigation, namely an analysis of the
Essex log files of real user queries using the existing locally installed search
engine (Sect. 7.1).

• We will then present results of a first user-oriented evaluation step, that
involved potential users of UKSearch. The subjects had to judge the useful-
ness of term relations uncovered in the domain model construction process
(Sect. 7.2).

• The third experiment is a task-based evaluation that has been performed
for the Essex domain (Sect. 7.3).

• Finally, we discuss a task-based evaluation performed for the BBC News
domain (Sect. 7.4).

7.1 Log Analysis

Our first step towards an evaluation aimed at a simple justification for a more
advanced search system that goes beyond pure keyword search. We started
by analyzing query logs collected for the existing search engine in one of our
sample domains.

This section presents an evaluation step that is purely technical. We used
the first sample domain (University of Essex Web site) for the technical in-
vestigations, mainly due to convenience (e.g. availability of a query corpus of
real user queries, no legal or access issues etc.).

122 INTELLIGENT DOCUMENT RETRIEVAL

In analysing the query logs we tried to be as objective as possible. This
is particularly important since we have no idea what a user who submitted a
query actually had in mind. We submitted each of the selected queries to a
search engine that has sufficient coverage of our domain and investigated the
result set. We had to make the simplifying assumption that the search engine
returns all matches that could be relevant for a particular query and nothing
else.

7.1.1 System Setup

In order to get results that take state-of-the-art technology into account we
used Google as the standard search engine of our choice. We did this for a
number of reasons:

• The technology behind Google [20] makes it one of the best search engines
publicly available. Studies have also found it to be one of the most popular
search engines (see for example [68, 164]).

• Google allows to restrict the search to a particular domain (i.e.
essex.ac.uk in this case). Therefore, there is no need to install a sep-
arate local search engine for such experiments.

• Google’s database covers our sample domain sufficiently (this can be found
by comparing the number of matches for general and specific queries sub-
mitted to both Google and our database).

• The existing search engine on the Essex University Web site is not very
sophisticated. Applying it in this investigation would have been less useful.

As a basis for testing we used the log files that record any query being
submitted to the existing search engine at the University of Essex between 1st

January and 31st March 2001. In total 26,365 user queries were submitted in
that period.

A number of normalization and filtering steps had to be performed to
select our test sets of queries. First of all, all queries were turned into lower
case letters, and typographical characters were replaced by space. Secondly,
all queries containing numbers (as well as empty queries) were ignored.

Two test sets of queries were chosen to conduct the log analysis:

1. The top 100 most frequently submitted queries in the evaluation period
(refered to as Set 1)

2. All queries submitted on an arbitrarily chosen day of the evaluation period
with a total of 206 unique queries (Set 2)

We will give some examples of how the test sets are composed. First of all,
the ten most frequent queries of Set 1 are as follows (query with corresponding
frequency):

7 UKSearch - Evaluation and Discussion 123

409 yahoo

304 summer school

226 fees

210 enlightenment

181 cmr

164 term dates

164 application form

153 timetable

147 prospectus

135 exam timetable

It might seem somehow surprising that the most frequently submitted
query is one unrelated to the domain: “yahoo”. In this respect the log file shows
some resemblance with standard search engines. For example, “yahoo” was
found to be the second most frequent user query submitted through msn.de
in the year 2000 [149]. Most other queries in Set 1 are very domain specific.

In addition to the most frequent queries, we give the (alphabetically) first
ten queries of Set 2:

accomadation

accomodation

accomodation office

acommodation office

afm

alison booth

alta vista

application

application forms

application form

As the example log shows, there are a number of misspelled queries. The
most prominent one is “accommodation” in its various forms. The misspelled
form “accomodation” can be found more frequently than the correct spelling.
Set 2 does not contain the correct spelling at all. This is a problem typical
to the Web, i.e. it goes beyond the queries and equally concerns the content
of Web pages. Some tests presented in [114] indicate that one in three foreign
names is misspelled on the Web and that even for common words like against
the error rate is about 0.5%.

We treat misspelled queries like any other query. After all, the user request
for “accomodation” still retrieves more than fifty matching documents! There
are however fewer spelling errors in our test set than we expected. To get
a clearer picture we include a figure for that in Table 7.1 which gives some
statistics for our test data.

It is interesting to note that the average length of a query submitted to
the Essex University search engine is shorter than what was presented in
[138] and [73] (an average query length of 2.35 and 2.21, respectively). These
results were based on queries submitted to standard search engines (AltaVista
and Excite, respectively). Taking the entire set of 26,365 queries submitted

124 INTELLIGENT DOCUMENT RETRIEVAL

Table 7.1. Test data

Set 1 Set 2

Number of Queries 100 206

Average Query Length 1.45 1.78

Length of Longest Query 4 6

Queries with Spelling Errors 2.0% 3.9%

Fraction of Query Corpus 24.3% 0.8%

©c 2003 IEEE

in the evaluation period, we get an average length of 1.72 terms per query
(maximum length of 15 words). Furthermore, the top 100 most frequently
submitted queries account for 6,404 of all queries submitted in the evaluation
period, which is about a quarter of the entire query corpus.

7.1.2 Results

The most striking fact is the number of documents retrieved when submitting
the requests to Google. In Table 7.2 we give a breakdown of what percentage
of queries in each of the test sets resulted in how many matching documents.

Table 7.2. Number of documents returned by Google

Set 1 Set 2

No matches 0.0% 2.4%

Between 1 and 50 16.0% 36.9%

Between 51 and 100 11.0% 8.2%

Between 101 and 500 38.0% 24.8%

Between 501 and 1000 14.0% 14.1%

More than 1000 21.0% 13.6%

Average number of matches 620 226

©c 2003 IEEE

The average number of matches for queries in both test sets is much larger
than we expected in a fairly small document collection like this one. Although
the deviation from the average is very large, it can also be observed that more
than one third of all frequent queries resulted in more than 500 matches, and
there are only 16% of all frequent queries for which Google would return no
more than fifty matches. Given the fact that a screen normally displays ten
matches only and that a user hardly ever goes to the next screen at all [138],
these figures are a clear argument for more advanced search engines that go
beyond displaying a large number of matches.

For the queries in Set 2 the figures are different. But more than 50% of all
the queries still retrieved more than a hundred documents.

7 UKSearch - Evaluation and Discussion 125

7.1.3 Discussion

To summarize, an interesting fact established by this technical investigation
is that even in a fairly small domain like the one we investigated the data
sparsity problem seems to be less significant than the problem of “too many”
matches. Queries submitted in our sample domain usually result in a large set
of matching documents despite the relatively small size of our domain. Part
of the reason is that users normally submit queries consisting of one or two
words only.

The results obtained from the user corpus are a justification for a query
refinement approach that helps narrow down the search. However, it does not
answer questions about the usefulness of the particular methods. This will
now be discussed.

7.2 Investigating Domain Model Relations

A user survey has been conducted to find out whether the relations between
term pairs in the domain model(s) are indeed sensible relations. In other
words, would potential users of UKSearch find them relevant when they search
the sample domain(s)?

7.2.1 Task and Setup

For this user study we adopted an approach used by Sanderson and Croft
[134], who investigated how “interesting” users would find pairs of words au-
tomatically extracted in a process that constructs term hierarchies. Our study
is simpler than that in that we were not interested in finding out what sort
of relation exists between two terms, but whether such a relation could be
“relevant” in an ad hoc search system or not. Although such a study only
looks at one aspect of the domain models we construct, we feel this is one
way of making the results more comparable than more complex investigations
which would for example let users assess entire concept hierarchies.

Subjects were staff and students at Essex University. They were given two
forms, one for each domain (i.e. Essex and BBC News). The introduction
given to the subjects was the following (with a link to two forms that each
contained pairs of related terms and some more instructions):

This is a little experiment. It consists of filling out two survey forms.
You are the user of a new search engine which searches a specified
document collection.
In addition to returning the best matching documents for any given
query, this search engine also returns a set of words or phrases (called
terms)

126 INTELLIGENT DOCUMENT RETRIEVAL

• that give an indication of what the retrieved documents are about,
and

• which can be added to the query in order to refine the search.
The following pages give a list of term pairs. For each pair, imagine
the first term was your original query, and that the second is one of
the terms proposed by the search system, which you could use to refine
the search. Please judge for each pair whether you think the second
term is:
• relevant (tick ”Yes”)
• not relevant (tick ”No”)
If you do not know, then tick ”Don’t know”.
Here, ”relevant” means that you can imagine a situation where the
second term is an appropriate refinement of the query given by the
first term.
When considering relevance, remember the particular document col-
lection that is being searched, as specified on the form.

Subjects were not told that two different techniques have been used to
generate these term pairs.

Each of the two survey forms contained 50 term pairs in random order, 25
of them pairs found in the automatically constructed domain model, the other
25 pairs were pairs selected using a baseline approach. The selection process
for a pair of terms was as follows:

• Using the Essex log files again, we selected the most frequently submitted
queries. For each of these queries we consulted the automatically created
domain model to find the hierarchies that contained the query in the root
(queries consisting of more than one query term were treated as com-
pounds). We then selected only one link from the root node down the next
level, the one with the highest weight. Each term pair was then built by
taking the query and the alphabetically first concept in the selected node.
If there was no appropriate domain model hierarchy in the model, then we
ignored the query.
For each query selected as mentioned we also constructed a random pair
as outlined further down.

• For the BBC News domain we did not have log files at the time we per-
formed this evaluation. Nevertheless, we discussed that frequent query
terms are likely to turn up as concepts in the document collection. At
least for the Essex domain we found a strong overlap between concepts
and queries frequently submitted to the existing locally installed search
engine. Therefore we decided to make the same assumption for the BBC
News domain to approximate real queries. We decided to select the most
frequent type-3 concepts found in the BBC News domain. For the construc-
tion of related pairs and random pairs we followed exactly the approach
used in the Essex domain.

7 UKSearch - Evaluation and Discussion 127

• As a baseline we used Google’s API to submit a query in the specified
domain, selected the first page of matches Google returned (i.e. the ten
highest ranked documents), downloaded these documents and selected the
most frequent term found. For selecting a term we used the same indexing
steps and the same patterns as we did for building a domain model. We
also applied the same stopword list. That means we deliberately used a
good baseline ignoring all terms that were not nouns or noun phrases or
that were found in the list of stopwords.

Naturally, we only get a very limited picture of the usefulness of term
relations. We do not even investigate the levels further down in the domain
model. The pairs we have selected seem sensible because for a given query we
ask the user to judge the refinement term that the system assumes to be the
best one for this query.

Interestingly, it only happened once that for a given concept we selected
exactly the same term using the domain model and the baseline approach.
This was the case for the query term ssh (which stands for “secure shell”) in
the Essex domain. The most frequent term found in the result set (baseline
approach) happened to be password. The domain model delivers exactly the
same term, because the hierarchy that contains ssh in the root node suggests
password as the most highly ranked query refinement option.

7.2.2 Results

In total 31 subjects were recruited for this experiment, 19 of them members
of staff in the Department of Computer Science, 12 of them students from
various departments.

The results confirm that the concept-based approach is a significant im-
provement over the baseline. In both domains the users judged more domain
model based terms to be sensible refinement options than terms calculated on
the fly using the baseline approach. This is how users judged the term pairs
for their relevance:

• BBC News domain: 64% of the potential query refinements using the
concept-based approach were considered relevant (for the baseline ap-
proach 48% of the potential query refinements were considered relevant).

• Essex domain: 59% of the potential query refinements using the concept-
based approach were considered relevant (baseline: 50%).

There is some interesting resemblance with the figures reported in [134]:
67% judged the term pairs in the concept hierarchies to be interesting. The
baseline approach gave 51%. In fact, the results we get are also remarkably
similar to the results of a study reported in [85], where anchor text was used
to construct query refinement terms, and users had to judge how “useful“
these terms would be to explore, learn about, or refine the original topic. The
study (called User Study II) which is comparable to our experiment concludesII

128 INTELLIGENT DOCUMENT RETRIEVAL

that 64% of the query refinements that were derived from anchor text were
considered useful (similar to the percentage of terms derived from query logs),
a good baseline gave 51%.

In our study, the differences in judging the term pairs constructed using
the two techniques were found to be significant by paired t-tests. For the BBC
News data we found a significance with p < 0.0005 and for the Essex data
p < 0.003. It is interesting to note that significance can also be shown when
we investigate the results obtained for either students or staff members only.

7.2.3 Discussion

Although significant differences between the two approaches exist in both do-
mains, it is obvious that the gap between baseline and concept-based approach
is much wider in the BBC News domain. One explanation is that there is more
consistent markup used in that domain (which allows the extraction of a “bet-
ter” domain model). The other aspect is that rather than downloading the
first ten matches Google returns one could download say the first 200 pages
and extract potential query refinements. Nevertheless, the similarity to the
figures presented in [134, 85] would suggest that the overall picture would not
change much.

For the Essex domain we noticed that some users had problems with the
proposed terms (sample user comment: “Not sure what a lot of the initials
stood for.”). Due to the smaller size and more inconsistent markup the domain
model contains some very domain specific relationships (such as term pair afm
and abdala) which users were likely to find irritating and subsequently judge
them as not relevant.

Users were also invited to give additional comments. The idea was to
treat them as feedback on both the user survey as well as the techniques in
general. One comment that several users had was that “relevance” could not
always be judged by answering yes or no, but that it should rather be judged
on a scale. This was a comment that had already been identified in sample
trials. However, for this experiment we wanted to obtain results that could be
compared to figures reported in [134].

It should also be pointed out here that although we compared the results
of the user study with Sanderson & Croft’s results, these two approaches are
significantly different. One is based on constructing relations offline for the
entire document collection, the other one builds hierarchies for a small set of
documents online as a result of a user query. Therefore, it is hoped that both
approaches could benefit from each other by combining them in one search
system. In fact, a number of different approaches could perhaps be combined
since they might be complementary. After all Kraft & Zien established in their
study that “the coverage of anchor text and query logs differs substantially
enough that both are useful for query refinement” [85]. This research area will
be left as an issue to be explored in the future.

7 UKSearch - Evaluation and Discussion 129

7.3 Task-Based Evaluation: Essex University

Evaluating search systems is an important research issue. A problem that
arises when evaluating such systems is the interpretation of the results. Results
that cannot be re-validated or compared against alternative approaches are
not very useful. This is why we adopted an existing evaluation framework
to evaluate the complete search system. The central idea was to compare
UKSearch with a standard search engine. The TREC conference series has
been successful at setting the standards for comparing systems against each
other. Since we were interested in comparing two different search systems that
work on the same domain, we adopted the evaluation methods developed for
the TREC interactive track [156]. We compared the actual UKSearch system
and a baseline system. Both systems access the same document collection,
the University of Essex Web site. The two systems can be characterized as
follows:

• System A is the baseline system which functions like a standard search
engine: the query is submitted by the user, Google (accessed via the Google
API) returns the results and the first ten matches are displayed. A user
can then either modify the query, go back to start a new search or click
through the result set via a link that takes the user to the next 10 matches.

• System B is the UKSearch system that uses the automatically constructed
domain model to assist a user in the search process by offering ways to
relax or constrain the query. It also uses Google’s API to display the best
matching documents alongside the options that have been found.

The systems look almost identical; the difference is only that in System A
no query modification options are constructed. Apart from that the GUI and
functionality is exactly the same in both systems. Figure 7.1 is a screenshot
of the baseline system showing the system’s response to the user query “phd”.
Figure 7.2 shows the response of the actual UKSearch system (i.e. System B)
following the same query. The screenshot demonstrates that for this evaluation
we did not offer the user the option to replace the query by a suggested
modification term. However, the evaluation discussed in the next section uses
a different setup.

16 subjects and 8 search tasks are needed to perform an evaluation accord-
ing to the guidelines originally developed for the TREC-9 interactive track
[67]. We will first discuss the experimental setup in more detail. After that we
will discuss the results.

7.3.1 Search Tasks

Apart from adopting the TREC interactive track guidelines we also wanted
to address one particular limitation of the experimental setup in that track,
namely the fact that for the experiments the “conditions are artificial” [66].

130 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 7.1. System A: a user has typed in “phd”

Unlike in the TREC interactive track we did not want to construct hypo-
thetical search tasks but use the log files of queries submitted to the existing
search engine at the University of Essex to make the search tasks as realistic
as possible.

Therefore, we constructed search tasks which:

• are based on frequently submitted queries,
• seem realistic (although we cannot be sure about the actual information

need a user had by just looking at logged user queries, we can try to
construct tasks that could have resulted in the query the task was derived
from),

• aim at single documents that contain the answers for the particular tasks,
• are not trivial, in the sense that we tried to prevent queries that return an

appropriate answer for the search task among the top 10 ranked documents

7 UKSearch - Evaluation and Discussion 131

Fig. 7.2. System B: a user has typed in “phd”

(because in that case we would have a very short interaction with the
system).

The last point in our list of requirements proved very difficult due to
the fact that we used Google as the backend search engine, and the results
returned by Google tend to be ordered in a way that the most sensible matches
for a user query can be found early on in the list of matching documents.

To summarize, we designed tasks with fairly precise targets for which we
knew documents existed that satisfy the information request (possibly more
than one), and where the main difficulty would be in finding such a document
rather than assessing lots of very similar documents or collecting information
from different documents.

We also made sure that the search tasks were not tailored to fit our do-
main model. In other words, if we have access to the domain model when
constructing the search tasks, then there could be a temptation to select cer-

132 INTELLIGENT DOCUMENT RETRIEVAL

tain tasks simply because we assume that the domain model is a useful aid in
guiding the user in the search. Therefore we first constructed the tasks and
then indexed the document collection and built the domain model.

The following tasks were constructed for this evaluation (the query that
the task is based on is shown in brackets and is not part of the actual search
task).

• Search Task 1 (accommodation): Your department invites a seminar
speaker from Edinburgh. The speaker will need accommodation for one
night. Locate a document which contains information about suitable ac-
commodation.

• Search Task 2 (password): You have forgotten the password for your
Essex account. Find a document that tells you who to contact.

• Search Task 3 (scholarships): You want to find out what external schol-
arships are available for postgraduate students from Asia - that is scholar-
ships other than those offered by the University or the individual depart-
ments. Locate a document that has information about such scholarships
for study in the UK.

• Search Task 4 (football): You want to play football using one of the
University football pitches. Find a document which tells you what you
need to do to book the football pitch.

• Search Task 5 (three frequent queries: vacancies, jobshop and jobs): You
are looking for a job as a student to work at the University. Locate a
document which has a list of jobs currently available. Documents that
only list jobs outside the University or jobs not available to students are
not relevant.

• Search Task 6 (gallery): Essex University has its own art gallery. Find a
document which has information about what is currently being shown at
the gallery (or has been shown earlier this year).

• Search Task 7 (phd): The University offers a number of different research
degree schemes. Imagine you are interested in doing a PhD at Essex Uni-
versity. Locate a document that informs you about what area you can do
your PhD in and how long it typically takes to do a PhD here. Docu-
ments that inform you about PhDs in individual departments only are not
relevant.

• Search Task 8 (student support): Find a document with contact details
about help for students who have problems with their landlord and need
support. Documents that indicate help for University accommodation only
are not relevant.

7 UKSearch - Evaluation and Discussion 133

7.3.2 Experimental Setup

The questionnaires used in this study are based on the ones proposed by the
TREC-9 interactive track (using a 5-point Likert scale where appropriate)1.
We used the following questionnaires:

• Entry questionnaire
• Post-search questionnaire
• Post-system questionnaire
• Exit questionnaire.

Some of the questionnaires were customized to reflect the particular ex-
perimental setup. For example, in the post-search questionnaire for System B
the user was asked whether the query modification options presented by the
system were sensible.

The assignment of subjects to tasks was based on the searcher-by-question
matrix displayed in Table 7.3. This table contains the mapping of tasks to
searchers as proposed in [67]. Note that in the table System A is the baseline
system and System B is the actual UKSearch system.

Table 7.3. Searcher-by-question matrix

Searcher System: Questions System: Questions

1 B: 4-7-5-8 A: 1-3-2-6

2 A: 3-5-7-1 B: 8-4-6-2

3 A: 1-3-4-6 B: 2-8-7-5

4 A: 5-2-6-3 B: 4-7-1-8

5 B: 7-6-2-4 A: 3-5-8-1

6 B: 8-4-3-2 A: 6-1-5-7

7 A: 6-1-8-7 B: 5-2-4-3

8 B: 2-8-1-5 A: 7-6-3-4

9 A: 4-7-5-8 B: 1-3-2-6

10 B: 3-5-7-1 A: 8-4-6-2

11 B: 1-3-4-6 A: 2-8-7-5

12 B: 5-2-6-3 A: 4-7-1-8

13 A: 7-6-2-4 B: 3-5-8-1

14 A: 8-4-3-2 B: 6-1-5-7

15 B: 6-1-8-7 A: 5-2-4-3

16 A: 2-8-1-5 B: 7-6-3-4

1http://www-nlpir.nist.gov/projects/t9i/qforms.html

134 INTELLIGENT DOCUMENT RETRIEVAL

7.3.3 Procedure

The procedure that every subject had to go through has been adopted from
[37]:

• Subjects started by filling in the entry questionnaire.
• This was followed by a demonstration of the two systems. The users were

informed that they will be using two different search engines, but they
were not told anything about the technology behind them, nor about the
use of Google as the backend search engine. Subjects were free to ask any
questions. The example presented on both systems was the initial query
“union” followed by a number of query modification steps.

• Users were then asked to perform four search tasks on one system followed
by four tasks on the other one (according to the matrix in Table 7.3).
Users were asked to use the (online) study worksheet for every search task
to submit the result and their confidence level.

• After each task users were asked to fill in the post-search questionnaire.
• After completing all four search tasks on one system users were asked to

fill in the post-system questionnaire.
• Finally, after finishing all search tasks users had to fill in the exit ques-

tionnaire.

Subjects had 10 minutes for each task. After that time they were informed
that the 10 minutes had passed. Why did we restrict the search to 10 minutes?
It has been found that in the TREC interactive track “there was a strong
desire to reduce the time per search (previously: 20 minutes)” [67], so that
the guidelines now just state that users should be given at least 10 minutes
on each task [66].

7.3.4 Results

This section gives an overview of the most interesting results. In all cases,
t-tests have been used for significance testing. A discussion of the results can
be found in the next section.

Subjects

We had 16 volunteers for this experiment, 8 of them male and 8 female. Their
ages ranged overall from 22 to 53, but apart from two subjects they were
between 22 and 29 years old. The majority of the test persons (14) were
postgraduate students (Master or PhD students) with various backgrounds,
the others were undergraduate students. All subjects were students at Essex
University when the experiments were conducted.

The average time subjects had been doing online searching was 5.9 years
(most of them between 4 and 8 years). When asked for their searching be-
haviour, the average value was 4.75, where 5 means daily, 4 means weekly.

7 UKSearch - Evaluation and Discussion 135

No one selected any other value. An interesting observation is that only one
subject strongly agreed (i.e. value of 5) with the statement “I enjoy carrying
out information searches.”, two others selected 3, everybody else selected 4
(i.e. average of 3.94).

Some other interesting statistics are summarized in Table 7.4 (based on a
5-point Likert scale, where 1 means “none” and 5 means “a great deal”).

Table 7.4. Subject experience with computers and search systems

Experience Mean

Using a point-and-click interface 4.38

Searching library catalogues 4.00

Searching CD ROM systems 2.75

Searching commercial online systems 2.56

Searching the Web 4.88

Search Statistics

The average length of the initial user query was 2.35 words (System A: 2.41,
System B: 2.30). This figure is in fact identical to what was calculated as the
average length of Web search queries [138], a study refered to earlier.

Table 7.5 gives a picture of the average completion time broken down for
each task. We decided to measure the time between presenting the search task
to the users and the submission of the result. In eight cases we had to ask the
user to stop because the 10 minutes had passed - three times on System A
and five times on System B.

Table 7.5. Average completion time (in seconds)

System T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
sk

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

A 259.9 261.6 293.9 288.0 150.5 177.2 427.4 361.2

B 231.8 179.4 426.5 385.6 245.9 211.6 338.8 329.9

Overall, the average time spent on a search task on System A was 277.5
seconds, on System B 293.7 seconds (no significant difference has been found).

136 INTELLIGENT DOCUMENT RETRIEVAL

The figures show that on average users were able to find answers quicker
with UKSearch for half of the search tasks, whereas the standard search system
was quicker for the other half. There is a significance only in one case, search
task 3 (p < 0.05). However, the search time is only one aspect and the results
do not correlate exactly with user satisfaction as we will see shortly.

In Table 7.6 we break down the average completion of a task into a number
of “turns”, i.e. the steps it takes to find the answer for a search task. A turn
can be inputting a query (or modifying the query), selecting a modification
option, following the link to the next ten matches or following a hyperlink to
open a document.

Table 7.6. Average number of turns to complete a task

System T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
s k

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

A 9.6 10.4 8.8 10.4 7.0 7.2 17.2 12.2

B 8.6 5.8 14.2 14.6 10.1 8.4 14.2 12.4

The figures in Tables 7.6 and 7.5 indicate that if a user needed more time
on one system to complete a task, then the user would go through more turns
than a user on the other system (an exception is the last task). There is only
one significant result. For task 2 users needed significantly fewer turns on
System B (p < 0.05).

In the post-search questionnaire users were asked to state whether they
were able to successfully complete their search task. For System A there was
only one case where this was answered with No, for System B there were
three cases altogether. The inspection of the submitted document identifiers
revealed that apart from these cases there were 20 documents that did not
answer the search task (10 for System A and another 10 for System B) as
well as three documents that answered the search task only partially (two for
System A and one for System B).

Post-Search Questionnaires

After finishing each search task a post-search questionnaire had to be filled in.
The questions that were common for both systems were the following (using
a 5-point Likert scale, where 1 means “not at all” and 5 means “extremely”):

• “Are you familiar with the search topic?”
• “Was it easy to get started on this search?”
• “Was it easy to do the search on this topic?”

7 UKSearch - Evaluation and Discussion 137

• “Are you satisfied with your search results?”
• “Did you have enough time to do an effective search?”
• “Did your previous knowledge help you with your search?”
• “Have you learned anything new about the topic during your search?”

Table 7.7 gives a breakdown of the results for the question “Are you satis-
fied with your search results?” For search task 8 users were significantly more
satisfied with System B (p < 0.01). The other differences are not significant.
The results indicate the tendency that the more difficult questions are better
handled by System B, whereas the basic system is better at dealing with the
more straightforward questions.

Table 7.7. Post-search questionnaire (user satisfaction for each task)

System T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
s k

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

A 4.12 4.50 3.38 3.88 4.88 4.50 3.00 3.00

B 3.88 4.50 4.12 3.00 4.50 4.25 4.00 4.12

Overall, users were slightly more satisfied with System B than with System
A.

Table 7.8 gives figures for the other questions of the post-search question-
naires. The values are not presented for every task, but they are the overall
average values. Interestingly, there is only one significant difference (p < 0.02)
between the two systems and that is the question whether any previous knowl-
edge of the topic has helped in the search. This could indicate, that System
B is better suited for allowing users to apply their knowledge in the search
process (note that the familiarity with the topic was very similar in both
systems).

The post-search questionnaire for System B contained two additional ques-
tions, that were not relevant for the basic search engine. One question was
“Did you know at each point in the interaction with the system what options
you had to continue the search task?” (a type of question adopted from the
PARADISE framework for the evaluation of spoken dialogue systems [160]).
The mean value for that question was 3.66. The other question was “Were the
query modification options presented by the system sensible?”. Here we had a
mean value of 3.44. Both these results suggest that UKSearch is easy to use
and typically presents sensible query modification terms.

138 INTELLIGENT DOCUMENT RETRIEVAL

Table 7.8. Post-search questionnaire

System F
a
m

il
ia

ri
ty

S
ta

rt

S
e
a
rc

h

S
a
ti

sfi
e
d

T
im

e

K
n
o
w

le
d
g
e

L
e
a
rn

e
d

A 2.84 3.48 3.33 3.95 4.23 2.91 3.27

B 2.98 3.70 3.56 4.05 4.30 3.47 3.21

Post-System Questionnaires

After performing four search tasks on one system a post-system questionnaire
had to be filled in. Here we only present the statistics for the multiple choice
questions. Later we will discuss any additional comments made by the subjects
in more detail. Table 7.9 presents a breakdown of the results. No significant
differences were found.

Table 7.9. Post-system questionnaire

Question System A System B

How easy was it to learn to use 4.19 4.44
this information system?

How easy was it to use 3.88 3.88
this information system?

How well did you understand how 4.19 4.06
to use the information system?

Exit Questionnaire

In the exit questionnaire users were asked to answer the question “Which of
the two systems did you like the best overall?”. 9 users prefered System B, 6
prefered System A and 1 found no difference. Remember, that the underlying
search engine in both systems was Google, which means that System B essen-
tially competed with a version of Google. Note however that the users were
not told anything about the underlying search engine.

We should also stress that such a preference for the system that we pro-
pose cannot just be taken for granted. In a recent study which also compared

7 UKSearch - Evaluation and Discussion 139

a baseline search system with a system that incorporates automatically con-
structed concept hierarchies it was found that more than half the subjects
prefered the baseline system “because of its simplicity and familiarity” [75].
Perhaps the fact that we do not present the full hierarchies but simply some
query modification terms alongside the search results makes our system more
familiar and hence more preferable by the users.

Table 7.10 summarizes how users judged the systems in respect to learn-
ing to use and using them. The table also contains the overall preferences.
Displayed are the numbers of users who selected each of the choices.

Table 7.10. Exit questionnaire (system preference)

Criterion System A System B No difference

Easier to learn to use 6 5 5

Easier to use 6 6 4

Best overall 6 9 1

Table 7.11 summarizes the answers users gave in the exit questionnaire
concerning the search experience they had in the experiment (where 1 means
“not at all” and 5 means “completely”).

Table 7.11. Exit questionnaire (search experience)

Question Mean

To what extent did you understand 4.31
the nature of the searching task?

To what extent did you find this task similar to 3.88
other searching tasks that you typically perform?

How different did you find the systems 3.38
from one another?

The most important result of this evaluation is the fact that the majority of
users prefered the concept-based search system over the baseline. Furthermore,
users were slightly more satisfied with the search results returned by UKSearch
than the baseline.

140 INTELLIGENT DOCUMENT RETRIEVAL

7.3.5 Discussion

So far we have mainly been concerned with the statistical evidence. In this
section we will discuss some of the other issues, such as feedback that came
from the subjects as well as patterns in users’ search behaviour.

Most of the questionnaires contained text fields that could be used to give
detailed feedback on tasks or systems. We will not try to discuss all issues
raised. Instead, we will highlight some of the more important aspects (e.g.
problems that are not restricted to single users) and present some of the
lessons learnt.

Many users liked the general idea of having refinement options. Some prob-
lems with these options were that they were not always good and that there
should be more help so that one knows exactly what the options are. It was
also noted that more time would be required to learn to use the system more
efficiently. One user commented that System B may be better when searching
a broad topic or searching huge document collections.

Users typically liked the simplicity of System A. One user noted “I like
system A because it more or less reflects my web searching habits and feels
more natural to use.”

A major problem - and one that can easily be rectified - had to do with the
interface. Users got confused with the input field that was provided for both
systems (see the screenshots in Figs. 7.1 and 7.2). A common mistake was to
use that field for starting a new search, although there was some text alongside
the field saying that the field can be used to modify the current query. There is
a straightforward solution. We now provide two separate input fields, one for
a new search request and one for modifying the current query. Alternatively,
one would use a single field only which contains the current query so that it
can be edited by the user (similar to what search engines typically do).

Misspellings are another problem. The word accommodation was mis-
spelled frequently (16 out of the 128 search tasks contained queries with typos,
eight on each system; of those there were 11 in tasks 1 or 8, topics that had to
do with accommodation). The actual problem is the fact that there is indeed
a sufficiently large number of documents matching the misspelled query. As a
result the query modification options proposed by UKSearch can actually be
misleading. A similar but domain-specific problem occured when users typed
“job shop” instead of “jobshop” (although we did not consider this a typo).
A possible solution for both of these problems is Google’s approach, i.e. to
present the results as usual but also ask the user explicitly “Did you mean:
...?” This would be sensible for frequently misspelled query terms, including
domain specific terms like jobshop. One user suggested that the system should
assist a user when the query is misspelled.

Two users ignored all the options that UKSearch proposed altogether and
instead used the system just like a standard search engine. It is actually one
of the intended features of the system that users do not get too distracted by

7 UKSearch - Evaluation and Discussion 141

the modification options, but treat the system as a search engine with some
additional features.

There were two users who typically used the search engine to locate a good
entry page (in this case the Essex University homepage) and then navigated
to the required documents from there using the link structure.

Finally, it must be said that such an evaluation is a difficult task. On the
one hand it is desirable to have a selection of real users (i.e. Essex students in
this case), on the other hand their previous knowledge will vary dramatically.
An indicator are the queries users submitted for search task 1 (“Accommoda-
tion” vs. “Wivenhoe House Hotel”) and task 4 (“university football pitches”
vs. “Sports Centre”).

A final comment on the evaluation framework we used for the experi-
ments. As an alternative to applying the TREC interactive track guidelines
for a task-based evaluation we could have adopted the PARADISE approach,
an evaluation framework developed for spoken dialogue systems [160]. In this
framework the assumption is that “values for user satisfaction could be pre-
dicted on the basis of a number of simpler metrics that can be directly mea-
sured from the system logs, without the need for extensive experiments with
users to assess user satisfaction”.

7.4 Task-Based Evaluation: BBC News

The user studies we looked at so far focused on two questions:

• Does the domain model encode term relations which can be useful for
query refinement?

• Will users prefer an integrated system (that incorporates our domain
model) over a standard search engine?

For both these questions we found supporting evidence that the general
approach presented in this book is indeed a sensible one. However, we only
looked at one domain (the University of Essex Web site) and so far we have not
combined the domain model with terms extracted on the fly. This is what we
investigated in the second task-based evaluation discussed here.2 The actual
experimental setup of the evaluation was very similar to the earlier experiment
we performed on the University of Essex domain. However, we did mention
that the dialogue strategy in the BBC News domain is slightly different. Apart
from that we did minor modifications to the system in the light of the previous
experiment. We will also look at some of the results from a slightly different
angle.

2Portions reprinted, with permission, from U. Kruschwitz and H. Al-Bakour. Users Want
More Sophisticated Search Assistants - Results of a Task-Based Evaluation. Journal of the
American Society for Information Science and Technology (JASIST), to appear. ©c 2004 Wiley
Periodicals, Inc., A Wiley Company.

142 INTELLIGENT DOCUMENT RETRIEVAL

7.4.1 Search Tasks

We have been able to acquire a substantial corpus of queries submitted in
December 2003 to the search engine installed at the BBC Web site. This corpus
was used to construct the search task which (similar to the tasks constructed
for the Essex domain):

• are based on frequently submitted queries (four of them using frequent
queries submitted to the BBC News world edition, the other four based
on queries to the UK edition),

• seem realistic (although we cannot be sure about the actual information
need a user had by just looking at logged user queries, we can try to
construct tasks that could have resulted in the query the task was derived
from),

• aim at single documents that contain the answers for the particular tasks
(this seems realistic for searches in a news domain and furthermore makes
the creation of tasks simpler),

• are not trivial, in the sense that we tried to prevent queries that return
an appropriate answer for the search task among the top 10 ranked docu-
ments.

Just like in our first evaluation we found the last point to be particularly
difficult to satisfy due to the fact that we used Google as the backend search
engine.

The following tasks were constructed for this evaluation (the query that
the task is based on is shown in brackets and is not part of the actual search
task).

• Search Task 1 (brazil): You are asked to find information about the cur-
rent president of Brazil. In particular, locate a document that has detailed
information about what he did in the 1980’s and 1990’s before becoming
the president of Brazil in 2002. Documents which give a general profile of
the country are not relevant.

• Search Task 2 (iraq): Locate a document that contains short summaries
of the main political figures in Iraq before the last Iraq war started.

• Search Task 3 (aids): The end of last year saw the start of a new big
campaign to fight Aids worldwide. Find a document that gives a sum-
mary of initiatives from around the world. Documents about activities in
individual countries only and documents prior to 2003 are not relevant.

• Search Task 4 (flu): Some scientists say that a new global outbreak of flu
is inevitable. Find a document that has details of how Britain was affected
by a recent outbreak of flu and how the country coped with that.

• Search Task 5 (lotto and lottery): Find a document that has recent,
detailed examples of how the money that the UK government raised by
selling Lotto tickets was spent. Information which is more than one year
old is not relevant.

7 UKSearch - Evaluation and Discussion 143

• Search Task 6 (m6 toll): There was a lot of discussion about the first
privately financed motorway in Britain that opened recently. Find a doc-
ument that has information about how some of the money that users of
this motorway have to pay will be used to support other projects.

• Search Task 7 (travel): Imagine you want to travel abroad and you are
not sure what exactly you are (or are not) allowed to take with you in your
hand luggage when boarding a plane. Locate a document that has details
about who you can contact to get up-to-date information.

• Search Task 8 (euro): Find a document that has details about the devel-
opment of the Euro currency since its introduction in 1999. Documents are
only relevant if they have milestones of the Euro’s development covering
the entire period from 1999 till at least the end of 2003.

7.4.2 Experimental Setup and Procedure

We adopted the same TREC interactive track guidelines and again distin-
guished between System A (the baseline) and System B (the actual UKSearch
system). Experimental setup and procedure were identical to the first task-
based evaluation (see Sects. 7.3.2 and 7.3.3).

7.4.3 Results

This section summarizes the most interesting results of this task-based eval-
uation. In all cases, t-tests have been used for significance testing. A detailed
discussion of the results can be found in Sect. 7.4.4.

Subjects

The aim was to find a set of volunteers who could be potential users of a
search engine such as UKSearch. In order to get a good selection of different
types of users and to avoid any bias in the selection process we sent an email
to the local University mailing list and selected the first 16 volunteers who
replied. In the email we specified that we required the subjects to be native
speakers. This is different to our first task-based evaluation.

Out of the 16 volunteers 6 were male and 10 female. Their ages ranged
overall from 20 to 46 (average age 27.7). This time we had a variety of back-
grounds, which included 11 students from different departments (including
Literature, Electronics, American Studies, and Computer Science) as well as
members of staff (clerical as well as academic). None of the subjects had taken
part in previous studies in online search. The average time subjects had been
doing online searching was 5.6 years (12 of them between 5 and 10 years, but
there was also a user who stated 0 years). When asked for their searching
behaviour, the average value was 4.75, where 5 means daily, 4 means weekly.
No one selected any other value (this observation as well as the average value

144 INTELLIGENT DOCUMENT RETRIEVAL

are identical to our first evaluation experiment). And again, only one subject
strongly agreed (i.e. value of 5) with the statement “I enjoy carrying out in-
formation searches.”, one selected 2, four subjects selected 3, everybody else
selected 4 (i.e. average of 3.69).

Some other interesting statistics are summarized in Table 7.12 (based on
a 5-point Likert scale, where 1 means “none” and 5 means “a great deal”).
Particularly interesting is that all users had “a great deal” of experience using
a point-and-click interface and searching the Web whereas hardly anyone had
experience searching on commercial online systems.

Table 7.12. Subject experience with computers and search systems

Experience Mean

Using a point-and-click interface 5.00

Searching library catalogues 3.27

Searching CD ROM systems 2.81

Searching commercial online systems 1.31

Searching the Web 5.00

Search Statistics

The average length of the initial user query was 2.89 words (System A: 2.82,
System B: 2.95), i.e. longer than queries typically submitted to Web search
engines (2.35 words on average according to [138]). There was one query of
length 8 and one of length 7, all others were shorter than that. In our first
evaluation we observed shorter queries, an indication that the tasks we set
this time were more specific and perhaps more difficult.

Table 7.13 gives a picture of the average completion time broken down for
each task. If the search was not completed after 10 minutes, we asked the user
to start with the next task. The users could then either submit a document
(and possibly indicate a low confidence) or not submit anything. There were
8 cases in which users did not submit any answer (5 on System A and 3 on
System B). In those cases we added a 60 second penalty to the 10 minutes as
suggested by [116] in a similar evaluation task. In Table 7.13 the t-test gives
us one significant difference (task 1: p < 0.05).

Overall, the average time spent on a search task on System A was 363.5
seconds, on System B 383.4 seconds. There is no significant difference. Note
that the average time spent on a search task is much higher than in our first
experiment (around 285 seconds on average) which again suggests that the
tasks were more difficult.

7 UKSearch - Evaluation and Discussion 145

Table 7.13. Average completion time (in seconds)

System T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
sk

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

A 230.0 501.1 416.5 289.0 291.4 424.8 319.4 435.8

B 331.1 490.1 521.6 316.9 291.5 511.4 222.5 381.8

There are a number of other aspects that can be derived from the logged
data. One particularly interesting fact is that users had to inspect fewer doc-
uments on System B to finish a task (on average 6.9 which compares to 8.0
on System A). No significant differences could be found however.

A second notable aspect is the fact that with guidance by the system the
user is able to complete the task in fewer steps, although the difference is
marginal and the average values per task vary a lot. In Table 7.14 we break
down the average completion of a task into a number of “turns”, i.e. the steps
it takes to find the answer for a search task. A turn can be inputting a query
(or modifying the query), selecting a modification option, following the link to
the next ten matches or following a hyperlink to open a document. On average
users needed 12.7 turns on System B (compared to 13.2 on System A). Tables
7.15 and 7.16 present a more detailed picture and include the average number
of documents inspected for each task.

Table 7.14. Average number of turns to complete a task

System T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
s k

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

A 7.9 15.1 13.0 10.2 9.1 17.4 12.1 20.5

B 10.9 17.9 20.1 9.6 9.1 12.1 7.4 14.6

We find that the user is much more likely to come up with a manual
query modification or reformulation than to select a term suggested by the
system. This observation is consistent with earlier studies that looked at the
users’ search behaviour on the IBM Trevi intranet search engine [85] and Al-
taVista’s Prisma tool [7]. As to the query modification suggestions presented
by the system, users did indeed make use of them although not excessively
(this reflects one of the objectives of our search framework which is to allow
users to ignore the suggestions and instead use the system as a standard search

146 INTELLIGENT DOCUMENT RETRIEVAL

Table 7.15. Average number of turns to complete a task on System A

Type of Turn T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
s k

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

Reformulations 2.8 6.0 4.8 3.9 4.9 7.4 5.8 5.6
(incl. “next 10”)

Documents viewed 5.1 9.1 8.2 6.4 4.2 10.0 6.4 14.9

Table 7.16. Average number of turns to complete a task on System B

Type of Turn T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
sk

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

Model suggestions selected 1.6 0.6 1.5 1.2 1.1 0.4 0.4 0.4

Baseline terms selected 0.0 0.5 0.9 0.0 0.5 0.1 0.1 0.4

Reformulations 4.6 6.6 6.4 2.8 4.1 4.6 2.4 5.1
(incl. “next 10”)

Documents viewed 4.6 10.1 11.4 5.6 3.4 7.0 4.5 8.8

engine if they want to). On average users selected 1.2 query modifications in
each task performed on System B. These modifications include query relax-
ations, refinements or replacing the current query by some suggested term.
The breakdown indicates that in total the modification suggestions based on
the automatically constructed domain model and the dialogue manager were
selected nearly three times as often as terms which were selected from the
best matching documents on the fly (the “baseline terms”) although there is
a big variation across the tasks. More discussion of this particular aspect of
the system will follow in Sect. 7.4.4.

In the post-search questionnaire users were asked to state whether they
were able to successfully complete their search task. For System A 9 answered
with No, for System B there were 5 cases altogether. However, we also went
through every submitted document identifier and judged (based on the infor-
mation contained in the sample documents we identified at task construction
time and on the actual search task) whether we would consider it a match for
the task. We found that there was a large number of submitted documents
that did not exactly match the information request as specified by the task.
That includes partial matches or documents that did not match the outlined
constraints. Only 83 of the 128 search tasks resulted in exact matches (43
on System A and 40 on System B). That is a clear indication that the tasks
were very difficult. There was no significant difference between the two sys-

7 UKSearch - Evaluation and Discussion 147

tems in that respect, but there were two particularly difficult tasks: tasks 2
and 6 (clearly reflected by the user satisfaction values in Table 7.17 further
down). Only 3 of the 16 users found a correct document for task 6, and 5 were
correctly submitted for task 2. Typical comments in the post-search question-
naire for task 6 were “Found information about the new Motorway but not
how the funds are used” and “found relevant information but no answer to
specific question of local project benefit”.

If we look at all 45 unsuccessful tasks in detail and compare it against
the results reported earlier on, we find that on average users looked at more
documents (System A: 10.6, System B: 9.1) and needed more turns (System
A: 17.6, System B: 15.3). Interestingly, despite longer interactions with the
system users selected fewer modification options presented by System B (1.0
on average per task; domain model suggestions were selected exactly twice as
often as terms extracted on the fly).

Post-Search Questionnaires

After finishing each search task the users filled in the post-search questionnaire
(this questionnaire was discussed in more detail in Sect. 7.3.4). All questions
were answered based on a 5-point Likert scale (where 1 means “not at all”
and 5 means “extremely”). Table 7.17 gives a breakdown of the results for
the question “Are you satisfied with your search results?” Overall users were
marginally more satisfied with the results returned by System A than with
System B, but no statistical significance can be observed for the overall result
or in fact any of the data reported in Table 7.17.

Table 7.17. Post-search questionnaire (user satisfaction for each task)

System T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
s k

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

A 4.38 2.88 3.12 3.38 3.25 2.62 3.38 3.38

B 4.00 2.38 2.88 3.25 3.25 2.38 4.38 2.75

Table 7.18 presents the results for the question “Have you learned anything
new about the topic during your search?” Overall users indicated that they
have learned more when using System B than using System A. Significant is
that users learned more when performing task 4 on System B than on the
baseline system (p <= 0.01).

Table 7.19 gives figures for the other questions of the post-search ques-
tionnaires. None of the differences are significant. It is interesting to point out
that every single value in Table 7.19 is smaller than the corresponding value

148 INTELLIGENT DOCUMENT RETRIEVAL

Table 7.18. Post-search questionnaire (something learned)

System T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
s k

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

A 3.25 2.25 2.75 2.00 2.75 2.50 2.12 2.50

B 3.00 2.25 3.00 3.38 2.75 3.12 2.75 2.38

calculated in our first task-based evaluation. This is the strongest evidence
that the tasks we asked users to perform in this evaluation were difficult in-
deed. That sentiment is also reflected by a number of comments the users
provided in the questionnaires, e.g. “It was hard to search for something that
I don’t know very much about”, “Found it hard to find the specific page.”, and
“I think most of the documents requested are specific, so it’s not that possible
to just search and obtain them.”

Table 7.19. Post-search questionnaire

System F
a
m

il
ia

ri
ty

S
ta

rt

S
e
a
rc

h

S
a
ti

sfi
e
d

T
im

e

K
n
o
w

le
d
g
e

L
e
a
rn

e
d

A 2.47 3.41 3.22 3.30 3.77 2.27 2.52

B 2.27 3.23 3.08 3.16 3.43 2.30 2.83

Now it could be desirable to quantify the complexity or difficulty of a
task, but constructing tasks of different complexity is an art on its own. We
do however know that task complexity can have a significant impact on issues
such as search success and user satisfaction [15]. We will not try to estab-
lish different levels of complexity in our tasks now that the evaluation has
been performed. However, in Table 7.20 we give a task-by-task breakdown of
some of the properties displayed in Table 7.19. Here we do not distinguish
between the two systems, because we want to get a picture of what the users’
perceptions were about the difficulty of the tasks in general.

There is a clear pattern which shows that the higher the value for user
satisfaction the easier users found it to get started and to do the search.
The only task that does not strictly follow this pattern is the task with the
lowest average user satisfaction value (i.e. task 6). But note also that there
seems to be no obvious correlation between familiarity with a topic and the

7 UKSearch - Evaluation and Discussion 149

Table 7.20. Post-search questions (task-by-task)

Criterion T
a
sk

1

T
a
sk

2

T
a
sk

3

T
a
sk

4

T
a
sk

5

T
a
sk

6

T
a
sk

7

T
a
sk

8

Familiarity 1.38 2.50 2.50 2.44 2.56 1.62 3.19 2.75

Start 3.88 2.62 2.94 3.62 3.50 2.88 3.88 3.25

Search 3.88 2.38 2.62 3.44 3.44 2.88 3.69 2.88

Satisfied 4.19 2.62 3.00 3.31 3.25 2.50 3.88 3.06

“difficulty” of a task. For example, task 1 is the one users were least familiar
with but it is the task they judged to be easiest to get started with and
do the search. One would perhaps expect a close correspondence between
these features (i.e. easier to search if more familiar) as for example reported
in another experiment performed as part of the TREC interactive track: “It
appears that an inherent feature of a difficult topic is the level of familiarity
and the understanding of the content and context of the issues.” [13].

The post-search questionnaire for System B asked the user (using a 5-
point Likert scale) “Did you know at each point in the interaction with the
system what options you had to continue the search task?”. The average value
was 3.77. For the second question specific to System B (“Were the query
modification options presented by the system sensible?”) we had an average
value of 3.16. Again we conclude that users typically found the system easy
to use and judged the query modification suggestions to be sensible. Having
said that we also observed that although users may find the modification
options sensible, they have not been used heavily. A clue could be that the
tasks were rather specific (e.g. sample user comments: “Found a great deal of
general information but difficult to find exactly what the task required, even
with the search options”, and “Some of the links given for the second system
weren’t that relevant to the current search”). Another explanation is that the
suggestions are useful not just for choosing the suggested query modifications
but to get a feel for the document collection, e.g. one user commented “With
the extra option list offered by the system, I found it far easier to use the
suggestions offered by the system or using the ideas and word combinations it
gave me to modify my search.”

Post-System Questionnaires

Table 7.21 gives a breakdown of the results obtained from the post-system
questionnaires. The only significant result is that users found System B easier
to use than System A (p < 0.006). This is an important result since we consider
the baseline system (System A) to be very simple and easy to use like most
standard Web search engines.

150 INTELLIGENT DOCUMENT RETRIEVAL

Table 7.21. Post-system questionnaire

Question System A System B

How easy was it to learn to use 4.31 4.19
this information system?

How easy was it to use 3.53 4.38
this information system?

How well did you understand how 4.19 4.12
to use the information system?

Exit Questionnaire

According to the exit questionnaire users strongly prefered System B. Despite
the fact that users were slightly more satisfied with the results returned by
the baseline system, their overall perception was in preference of System B.
13 users prefered System B, 1 prefered System A and 2 found no difference.
Although our first evaluation indicated the same preference we did get a much
more significant difference this time.

Furthermore, a large majority of users also judged that System B was
easier to use than the baseline system. Finally, when looking at the question
of which system was easier to learn to use it should be remembered that there
is a set of different options which System B could come back with. Apart from
presenting query refinements it may instead present query relaxations. Getting
used to these options involves a short learning process that the baseline system
does not require. Therefore it might be surprising that not more people voted
for System A to be simpler to learn to use.

Table 7.22 summarizes these results. Displayed are the numbers of users
who selected each of the choices. The figures in this table confirm the results
of the post-system questionnaires in that users found System B much easier
to use whereas System A was a tiny bit easier to learn to use.

Table 7.22. Exit questionnaire (system preference)

Criterion System A System B No difference

Easier to learn to use 5 4 7

Easier to use 2 10 4

Best overall 1 13 2

7 UKSearch - Evaluation and Discussion 151

Table 7.23 summarizes the answers users gave in the exit questionnaire
concerning the search experience they had in the experiment (where 1 means
“not at all” and 5 means “completely”).

Table 7.23. Exit questionnaire (search experience)

Question Mean

To what extent did you understand 4.25
the nature of the searching task?

To what extent did you find this task similar to 3.56
other searching tasks that you typically perform?

How different did you find the systems 3.06
from one another?

The main conclusion that we derive from the statistical evidence is that in
the given context of searching for documents in a large collection of news arti-
cles users strongly prefer a search system that offers more than just a ranked
list of documents. Our users favour a system that offers query refinement and
relaxation options and guides them through the available information. We can
further conclude that users consider such a system to be significantly easier to
use. The second interesting conclusion to be drawn is that users favour such a
system although there was no significant difference between the two systems
according to a number of different measures.

We can also conclude that the presented query modification options were
generally considered sensible although in the given setup they did not result
in statistically measurable benefits. We hypothesize that the major reason for
that is that the presented modification terms were not always helpful for the
extremely specific tasks that had to be answered in this context.

7.4.4 Discussion

Having analyzed the statistical evidence we now want to focus on patterns in
the users’ search behaviour as well as feedback that came from the subjects.

Patterns in User Behaviour

First of all we wanted to know whether users make use of any suggestions
presented by System B, be it for refinement, relaxation or replacement. We
found that only a single user did not make use of any such options. Remember
that users were free to ignore any options and could use the system just like
a standard search engine. The fact that users actually utilize the suggestions
proposed by the system confirm the observations in our first experiments.

Now if we look at it in more detail we find:

152 INTELLIGENT DOCUMENT RETRIEVAL

• 14 users selected refinement terms presented by the system. Those are
terms which are added to the current query. Of those 14 users there were
9 who selected terms which have been derived from the domain model, i.e.
concepts that have been extracted in the model construction process. As
outlined earlier on we present such concepts alongside terms extracted on
the fly from the best matching documents.

• 13 users selected relaxation options suggested by the system. Those options
are presented to break down the query into individual parts for example.

• 8 users selected replacement options, i.e. they replaced their query by one
of the refinement terms suggested by the system.

As outlined earlier, in those cases where our search system presents refine-
ment suggestions we display a list of terms that could be added to the query,
and the first in the list will be those derived from the domain model (followed
by terms extracted on the fly). The intuition is based on our experiments
that found terms encoded in the domain model to be more suitable as query
refinement options than those extracted on the fly (Sect. 7.2). We pointed out
that the domain model concepts were selected much more frequently than the
terms extracted on the fly, but we do not know to what extent this might
have been affected by the order of term presentation.

We also observed that the tasks seemed to be particularly difficult if we
look at the figures for measures such as time taken and user satisfaction and
compare them with our earlier evaluation. Obviously, we deliberately avoided
simple tasks because we did not want users to type in a query and get the
results back straightaway. However,when evaluating search systems on news
documents one should perhaps mix simple with more difficult tasks, because
we assume that simple tasks are the majority of realistic user requests, e.g. a
lot of users who submit the query “iraq” will be interested in what is going
on in Iraq right now, something that will typically be listed on the first result
page.

Although the information requests we constructed were very specific, we
found that with one exception all the original queries that the tasks were based
on in the first place were actually submitted by at least one user (partly as
the initial query, partly to replace some original query by a new one). The
exception is “travel”, in which case we only found similar queries such as
“travel guide” and “travel information”.

In our first evaluation experiments we noticed a large number of typos in
the user queries. And again, nearly 20% of all search tasks in this evaluation
(24 out of 128) contained queries with typographical errors, e.g. “govenrment”,
“wordwide”, “AIDS compaign”, “britain coped flue”, “sadam”, and “euro cur-
rancy”. This is a significant number and indicates again the type of problems
to be addressed by a search engine.

We shall now look at some of the individual tasks since a task-by-task
analysis can lead to interesting differences in the interaction style [13]. We
selected three tasks which according to Table 7.20 represent the most difficult

7 UKSearch - Evaluation and Discussion 153

task we asked users to perform (task 2), the easiest one (task 1) and one in
the middle (task 5). We are mainly interested in the interaction with System
B.

• Search Task 1 (brazil): This was the task where the average user satisfac-
tion value was the highest and where users submitted the shortest initial
queries on average (2.44 words). Only one submission was incorrect. If we
only consider System B, we find that five users made use of query modifi-
cation suggestions proposed by the system (all but one of them more than
once). Interestingly, the query refinement terms that were selected came all
from the domain model. The log files suggest that a typical query such as
“president brazil” or “President of Brazil” was handled nicely by the sys-
tem; two users selected a refinement term immediately after submitting a
query (lula da silva and luiz inacio lula, respectively), both of which were
followed by more selections of system suggestions later on. One user first
modified the query using the input field before selecting lula da silva as
a refinement term. The other two users who opted for automatically gen-
erated query modifications first rephrased their queries before choosing
a relaxation option (“Search only for: brazil and president”, or “Search
only for: president”, respectively). These last two cases suggest that if the
query contained additional words which were not filtered as stopwords (e.g.
“Current president of brazil”) or contained typos (“President of Brasil”),
then no refinement option would be displayed and users needed to rephrase
their query or select relaxations.
This is also the task where a number of users typed in dates (e.g. “1980-
1990”) which were ignored by the system which led to confusion on the
users’ end.
In general users who performed this search task on System B considered the
query modification suggestions sensible (mean value 3.75 on the 5-point
Likert scale, one user selected a 1, i.e. “not at all sensible”, all others
selected 3,4 or 5).

• Search Task 2 (iraq): This was the task with the longest average initial
query length (3.88 words), and at the same time one of the two tasks where
the success rate was really low (only 5 correct submissions) as well as the
user satisfaction value. Typically, users submitted fairly specific queries
but could not find any matching documents, so that they then rephrased
the query (e.g. sample queries are “main political figures in Iraq” and “po-
litical figures in IRAQ pre-war”). Five users of System B selected query
modification suggestions, one of them only once, the others twice. Inter-
estingly, all three correctly submitted results on System B were submitted
by one of those five users. However, it appears that the suggestions re-
turned by the system were not always helpful. Only in two cases did the
users select a system suggestion following the initial query, in both cases
they selected a relaxation which happened to be the same one each time
(“Search only for: iraq”).

154 INTELLIGENT DOCUMENT RETRIEVAL

We noticed that it was difficult to find documents that deal with infor-
mation for the specified time. Most of the documents seem to be about
current affairs. We also assume that one of the reasons for not being able
to locate a suitable document easily is because words such as “before” and
“pre” would be filtered as stopwords.
Asked whether the query modification options generated by System B
were sensible we get a very homogeneous result: average value 3.00 with
one users scoring a 2, one user scoring 4, all others selected 3.

• Search Task 5 (lotto and lottery): The average length of an initial user
query was 2.62 words. Only one submission was not considered correct.
Four users selected query modifications suggested by System B, the other
four did not select any of those options. Interestingly, all those users who
did choose such an option did that more than just once (up to five op-
tions). Some users of System B submitted queries which did not require
them to do any resubmissions or modifications, but a simple inspection
of the returned documents was sufficient to perform the task (e.g. “Lotto
tickets UK government” and “lottery funding”). Three of the four users
who selected query modifications did in fact choose a query relaxation in
the first step (e.g. a user submitted “Lottery projects 2003” as the ini-
tial query and then selected the search option “Search only for: lottery”;
similarly the query “Lotto money spent” was broken down into relaxation
options and the user selected “Search only for: lotto”). In all three cases
the user later added a term suggested by the system in a refinement step
(e.g. lottery cash).
For this task the user opinion as to whether the query modification sug-
gestions are sensible varied a lot (average value 3.00, but the values ranged
from 1 to 5).

The picture we get by analyzing the tasks is that in any one task about
half of the users apply the suggestions proposed by the system. Furthermore,
if users do select query suggestions, then they typically do it not just once for
each task. It also appears that in some tasks users were more likely to relax
their initial query whereas in other tasks they refined it. We do not want to
over-interpret these results and instead focus on the comments that users had
after using the systems.

User Feedback

Before we do so we should add that one of the criticisms in the first task-based
evaluation was that users were confused by the input field in the old system
which was wrongly assumed to start a new query, but in fact it was there to
modify the query. This time we provided two separate input fields (one for
modifying the query and one for a new query). This has been appreciated
because the common feedback was that both systems were easy to use and
very intuitive. In fact, a frequent comment made by the users in the exit

7 UKSearch - Evaluation and Discussion 155

questionnaire was that both systems were simple to use. The simplicity of the
layout was noted and the fact that there were no distractions on the screen.

Users generally liked the idea of refinement options. Several users expressed
that such options can give the searcher an idea of what information is available
and that the system can suggest “similar topics that weren’t originally thought
of”. Other users commented that the offered terms could either be selected or
help in getting an idea of how to modify the query. One user said that System
B “helps with the spelling of keywords and can give the user more specific
knowledge about the topic they are searching for.” Other comments concerning
the strong points of System B were “System B had refinements which really
helped”, “This system provided more search alternatives, that yielded a wider
number of relevant search results”, and “No clutter - just the search box and
results.”

A criticism of System B was that the query modification options were not
always helpful and that they could actually divert the search to completely
different topics. One user noted: “I liked the idea of refinement options, just
didn’t find them useful.” Another comment was: “The modified query options
it gave didn’t always help the search - sometimes you ended up going round in
circles if you weren’t familiar with the search topic already. It is better than
with no options however like the first system as long as you don’t rely on
them.”

One problem we identified was that we did not index on dates and therefore
such information was simply ignored, which meant that users were not happy
if they asked for “2003” and the input was simply deleted. That problem
can easily be fixed. Another aspect specific to the domain was that users
would have found it more helpful if there had been a date associated with the
documents or the documents had been sorted by date.

As a confirmation of what we observed earlier a user commented “The
topics were very specific and it was quite difficult to find an exact match for
any of the questions.”

So what did the three users say who prefered the baseline system or had
no preference at all? The user who prefered the baseline system criticised that
the options which are suggested by System B “are not complete, therefore can
tempt the user to use them, diverting the search”. Of the two users with no
preference for either of the systems one noted that System B was in fact more
useful in breaking down the query with refinements, but that “sometimes the
refinement options were not useful”. The other user commented that both
systems were not really different to what he or she is used to and “it is just
as easy to type in your own refinements. However, when searching a subject
that you are not familiar with it may help to have refinement suggestions.”

We conclude that although our users strongly prefered UKSearch over
the standard search approach, there is still enough scope for improvements,
in particular when it comes to the relations encoded in the domain model.
Our vision is a domain model that adjusts automatically to the users’ search

156 INTELLIGENT DOCUMENT RETRIEVAL

behaviour and preferences. Such a system will be outlined in the final chapter
(Future Directions and Conclusions).

8

YPA - Searching Classified Directories

The Ypa is a natural language dialogue system which guides a user through
a dialogue in order to retrieve addresses from classified directories such as
the Yellow Pages. The Ypa is similar to UKSearch in respect to the partially
structured input data (of limited size) and the dialogue driven interaction
between user and system. It differs however in that the classification structure
found in classified directories is an implicit part of the raw data. This system
was developed at the University of Essex as a research project funded by
BTexact research labs1. The project started in January 1997 and finished in
December 1999. It is historically interesting in this context for the following
reasons in particular:

• The original idea of a dialogue system to access partially structured data
was the principal goal of the Ypa project. This is where the idea for the
topic of this book was born.

• The Ypa system demonstrates that the same framework that has been
used in UKSearch can be applied in a very different context: to search
classified advertisements for which some classification structure is available
in explicit format. Because such knowledge is already available, the focus
is on the dialogue driven search system whereas UKSearch focused on the
construction of a suitable domain model and its application.

• There are obvious differences between UKSearch and the Ypa when it
comes to the construction of query modification options. UKSearch simply
matches the input against a domain model. In the Ypa on the other hand
we have (apart from the simple domain model) a structured database and
make assumptions about the types of information stored in that database.

• Several evaluation steps have been performed for the Ypa which demon-
strate the usefulness of a simple dialogue system for searching partially
structured document collections. Those are however not discussed here,
they can be found in [161].

1http://www.btexact.com

158 INTELLIGENT DOCUMENT RETRIEVAL

Query Construction
Component

World Model

GUI

Toplevel

Backend

Natural
Language
Frontend

YPA

Fig. 8.1. Architecture of the Ypa

We will only discuss certain aspects of the Ypa here. The focus will be on
how the Ypa can be seen as realization of our general search framework. We
will present work that has been developed and implemented by the author of
this book. The Ypa system is described in detail in [44].

The following transcript is a sample conversation process:

system: Welcome to the YPA. What service do you require?
user: I want to buy something in Colchester.
system: The database could not be queried.

What sort of goods do you want?
user: Some top brand golf equipment!
system: The following addresses could be retrieved:

...

8.1 System Overview

The Ypa is an interactive system. Figure 8.1 is an overview of the system
architecture (depicting the data flow).

A conversation cycle with the Ypa can be roughly described as follows. A
user input (typed in via the Graphical User Interface) is sent to the Dialogue
Manager. The Dialogue Manager keeps track of the current stage in the dia-
logue and controls the use of several submodules. Before handing back control
(together with the relevant data) to the Toplevel, the input is first sent to the
Natural Language Frontend which returns a so-called slot-and-filler query. The

8 YPA - Searching Classified Directories 159

Dialogue Manager then consults the Query Construction Component, passing
it the result of the parsing process (possibly modified depending on the Dia-
logue History etc). The purpose of the Query Construction Component is to
transform the input into a database query (making use of the Backend and
possibly the World Model), to query the Backend and to return the retrieved
addresses (and some database information) to the Dialogue Manager. Finally
the Dialogue Manager hands back control to the Toplevel which for exam-
ple displays the retrieved addresses. It could also suggest query modifications
which were passed to it by the Dialogue Manager, if the database access was
not successful (i.e. did not result in a set of addresses). At this stage the cycle
starts again.

8.2 Indexing Classified Advertisements

The electronic version of the Yellow Pages we had access to is represented by
the so called Yellow Pages data file or printing tape in electronic form. (We
were given access to the Colchester area.) All addresses, headings (i.e. business
classifications) and various references are stored in a record structure, where
each line is one record. However, there is no 1:1 relation between records
and entries — address entries, heading entries etc. More specifically, most
addresses only stretch over one line (so called free entries), but some addresses
of a different type (e.g. semi display entries) will always consist of more than
one line. An interesting part of these address entries is the free text which is
an optional natural language portion to be printed in the advertisement along
with the address as in the following example:

Kruschwitz Golf & Leisure Wear

Suppliers Of All Top Brand Golf Equipment

100 High Street Colchester 822990

There is no special attribute that marks a record as free text (in the ex-
ample: Suppliers Of All ...). Thus, we can consider the Yellow Pages data file
as some partially structured text that fits into our framework because:

• the record structure means that we do not deal with unrestricted text;
• the record structure is relatively poor, so that while the extraction of an

entry is straightforward, it is not obvious how to split its address (for
instance) into units such as company name, location, free text etc.

After analyzing the source file, the initial task of exploiting the given
structure can be summarized in the following steps:

• layout analysis, which transforms the input file into a canonical form (sim-
ilar to what we did in UKSearch);

160 INTELLIGENT DOCUMENT RETRIEVAL

Stemmer

WordNet

Brill-Tagger

Raw YP Backend DB

...

Fig. 8.2. Extraction of the Ypa-Backend

• address extraction;
• extraction of headings;
• splitting address entries into smaller units (including free text);
• conversion into relational schemata.

Since we are dealing with advertisements we can apply extraction methods
customized to the domain which allow us to interpret individual parts of an
entry as some meaningful units (e.g. name, location, type of goods or services).
The above steps will give us a more structured database than what we have
seen in UKSearch. The result is a relational database which forms the main
part of the Backend. Figure 8.2 reflects the data flow in the index construction
process for each part of the advertisements. Note that due to the limited size
of available data we do not just apply a part-of-speech tagger, but a lexicon
to reduce words to their base forms and a stemmer as well. A more detailed
account of the Backend construction processes can be found in [43]. We will
briefly look at the structure of the Backend and then discuss how we construct
a domain model (as part of the World Model component of the Ypa).

8.2.1 Structure of the Backend

The Backend contains the information from the raw Yellow Pages. There are
three subcomponents that form the Backend:

8 YPA - Searching Classified Directories 161

• the Relational Database, which contains all the information extracted from
the raw data file (the actual addresses, indexes etc.)

• the Ranking Component, which contains information about the extracted
data (occurrences, term frequencies etc.)

• the Language Module, which provides base forms and word stems for any
word form.

The Relational Database

The main purpose of the Relational Database is to represent the addresses
that were extracted from the Yellow Pages.

Tables exist for address entries (complete addresses, company names, key-
word indexes for the free text of addresses, keyword indexes for the company
names etc.) and for headings used in the Yellow Pages (complete headings,
keyword indexes, see-references and see-also-references).

Additionally there are tables for relations which are not directly retrieved
from the data file but derived by adding the information contained in the back
cover of the Yellow Pages together with variations in the usage of town names
detected in the actual addresses: town indexes and dialling codes.

The Ranking Component

The tables in the Ranking Component contain meta information about the
data from the Yellow Pages, i.e. information about the distribution of keyword
indexes in either the headings or addresses etc. This data is for example used
by the Query Construction Component to determine the weights for retrieved
addresses or the weight of potential query modifications.

Language Module

The Language Module provides interfaces for the morphological reduction of
word forms to base forms and for the reduction of base forms to word stems.
These functions are useful when trying to access the Relational Database or
the Ranking Component since the indexes are constructed using the Language
Module.

The implemented Language Module accesses the WordNet library. These
functions could instead be supplied by any other system, but in this case the
Backend Databases would have to be rebuilt in order to match the stemmed
base forms stored in the index files with the base forms used in the online
dialogue.

8.2.2 Domain Model Construction

We could apply exactly the same domain model construction process as we
have seen in the UKSearch system. The different markup contexts are clas-
sifications, free text, business names etc. In fact, this has been done when

162 INTELLIGENT DOCUMENT RETRIEVAL

running the Ypa system with Talking Pages data. But more importantly, in
this application we can utilize some existing classification structure and do
not need to construct a domain model from scratch. We can treat the head-
ings and cross-references between them as a very reliable knowledge source.
Therefore, the existing classification structure is used to construct a domain
model as it was introduced in Sect. 4.1 when we discussed the incorporation of
additional knowledge. We treat index terms extracted from classifications as
concepts and cross-references between classifications as relations between the
individual index terms. This gives us a domain model that is simply based on
the relations outlined in Definitions 4.1, 4.2 and 4.3 using concepts selected
from the actual classifications as we have discussed it earlier in Sect. 4.1.

Let us look at this process in some more detail. The Yellow Pages are
divided into sections which each list a set of addresses. The name of such
a section is a heading. Moreover, there are two types of heading references
(i.e. cross-references) that can immediately follow such a heading. First, see-
references occur in sections that do not contain addresses at all but instead
only refer to other headings (heading Fishing Agents contains only a reference
to Shooting and Fishing Agents). Second, there is a type of heading reference
which is called a see-also-reference. This type can be found in sections which
do contain addresses but where a reference might be a useful addition to the
heading (heading Zoos contains a see-also-reference to Tourist Attractions).

The content of the headings is extremely rich in information especially
because there are very few cases where a heading consists of more than 4
words. An index is created for nouns and noun phrases found in every heading.
These are the index terms which we treat just like concepts in the UKSearch
system. We treat two such concepts as related concepts if they were either
extracted from the same heading or from two separate headings which are
linked by a see-reference. We ignore see-also-references in the domain model
construction process altogether. We then build a model as outlined in Sect.
4.1. A little technical note: for the Ypa we do not build the model in an offline
process, instead we perform these steps on the fly without database access (by
simply consulting the concepts and relations between them).

We will see how this model is exploited in the dialogue to construct po-
tential query modification options.

8.3 Dialogue Strategy in the YPA

A goal description in the Ypa is more structured than in UKSearch.
The interaction between user and machine can be roughly summarized

as a filling of different slots in a slot-and-filler query with the information
extracted from the user input, so that the database access finally retrieves an
acceptable set of entries. These slots represent different types of information
such as goods and services or location information. The slot-and-filler query
is encoded as part of the goal description which contains a number of other

8 YPA - Searching Classified Directories 163

Fig. 8.3. Ypa: response to user query “I need an electrical specialist ...”

parameters apart from the actual user request. In this process, the Dialogue
Manager is the vital control module. Every time the Dialogue Manager is
called it performs the following tasks:

• calling the Natural Language Frontend
• evaluating the parsed input and determining the dialogue state
• performing all actions corresponding to the state transition.

Conceptually the dialogue manager is no different to the one used in UK-
Search. However, it is also more customized and capable of dealing with the
more specific dialogue states that can occur in this application. A query for
which the Ypa can find a set of matching advertisements is displayed in Fig.
8.3.

164 INTELLIGENT DOCUMENT RETRIEVAL

Fig. 8.4. Ypa: response to user query “kitchen cupboard specialist”

For a second example see Fig. 8.4. Displayed is the response following the
user query “kitchen cupboard specialist”. In this case the Ypa was unable to
find any matching advertisements and some query relaxations are suggested.

The dialogue manager is an implementation of the system outlined in
Sect. 5.6. Here we demonstrate how the parts of the dialogue manager are
set up. In this applications the Query Construction Component is responsible
for matching goal descriptions against the database of advertisements and for
calculating potential query modifications.

If the Query Construction Component can match the goal description
against a reasonably sized set of addresses (i.e. advertisements) in the Back-
end database, then these matches will be displayed. No query modifications
will be calculated. The administrator setup defines up to how many addresses
would be displayed. If the database delivers too few matches, then a general
strategy of successive relaxation is applied. Relaxation options (i.e. modified

8 YPA - Searching Classified Directories 165

goal descriptions) would for example be constructed by ignoring “less im-
portant” slots (e.g. opening hours as opposed to goods and services) or by
suggesting partial matches (as displayed in Fig. 8.4). If too many addresses
are retrieved, then the query will be further constrained by calculating poten-
tial query refinement options. The domain model (which is part of the World
Model component of the Ypa) is utilized in the same way as the domain model
in the UKSearch system.

8.3.1 Properties

We distinguish a number of document properties to express the relevant infor-
mation we extract from advertisements (i.e. documents). The database con-
tains corresponding tables, so that a database query can be more complicated
than just a simple index lookup. The user input is parsed, so that the query
terms for each of these document properties can be extracted appropriately:

• Keyword x can be found in the goods and services section of an adver-
tisement (the indexing step interprets all free text as goods and services
information that has not been identified as belonging to one of the other
types of information such as location).

• Keyword x can be found in the business classification (of an advert).
• Keyword x matches a business name.
• Keyword x is a location name matching the location of the business.
• Keyword x matches the opening hours of a business.
• Keyword x can be found in the payment methods.
• Keyword x matches a business classification c.

The very last property in this list can be used to restrict the search so that
only documents that satisfy the user query and are listed under a specific
business classification should be retrieved (e.g. find only those plumbers in
London that are classified under Boiler Cleaning).

Each of the properties can be mapped to a particular slot in the slot-and-
filler query (but goods and services information and classification information
are both kept in the same slot).

Unlike in the UKSearch system we do have system properties whose setup
can be modified by the user or proposed by the system. The properties we
distinguish can be characterized by a set of questions:

• Should an external world model be applied?
• Should all index tables (including the business names) be searched? Or

just the free text?
• Should only business names be searched?

These questions are encoded in the user interface, so that a user can decide
whether the default values of the appropriate system properties should be
modified. For example, one version of the Ypa gives the user the following
options (possible choices shown in parentheses):

166 INTELLIGENT DOCUMENT RETRIEVAL

• Apply world knowledge: (always / never / only if needed)
• Search space: (all index files / only company names / all files except com-

pany names).

The resulting goal description is obviously more complex than in a simple
Web search application. The values in the attribute-value pairs are updated
by either adding, deleting or replacing elements (apart from keywords we
keep track of some syntactic information derived from the input as well as
conjunctions and disjunctions), but also by setting particular values for the
system properties.

Assuming the user has typed in “cameras in Colchester”, then we will get
a goal description such as this one:

Goal = [document_keyword_goods({cameras}),

document_keyword_classification({}),

document_name({}),

document_location({colchester}),

document_opening_hours({}),

document_payment_method({}),

document_classification({}),

system_searchspace(default),

system_worldmodel(off)]

8.3.2 Dialogue Setup

The input is either typed input or a selection of a tick box that is associated
with a potential choice offered by the dialogue system.

The dialogue history contains the last query. This structure is only used
for display purposes.

The currentquery function turns a goal description into a database query.
Each slot corresponds to a particular set of index tables. The content of each
slot is mapped to a query containing flat query terms in conjunctive normal
form. The values of the system properties influence the query construction.

The retrieve function matches a query to a set of documents retrieved from
the database following a query submission.

Again, the central dialogue state is the Display state (to be precise, the Dis-
play state is a generalization of three distinct states as explained in Sect. 5.6:
a successful database access, too many matches and too few matches). Apart
from that we have all the other states characterized in Chap. 5.6, namely:

• Start state
• Meta state
• Unknown Input state
• Missing state and
• Inconsistency state.

8 YPA - Searching Classified Directories 167

Fig. 8.5. Ypa: response to user query “I want to buy a Minox”

The input parser detects requests for restarting the dialogue (i.e. a request
to move to the Start state) or if the user asks for help (i.e. Meta state, which
is treated just like the Meta state in the UKSearch system).

If the user input cannot be matched against the database, then the dialogue
moves to the Unknown Input state. This triggers a clarification step and as
a result of that the dialogue manager will either go into the Display state,
remain in the Unknown Input state or go into one of the other states. The
move into the Display state means that the goal description will be updated
accordingly (the original query terms will be replaced by the newly input
information). See Fig. 8.5 for an example input (“I want to buy a Minox”)
that makes the system go into the Unknown Input state.

The information collected in a clarification step is logged and can be edited
by an administrator or automatically added to the world model applied by

168 INTELLIGENT DOCUMENT RETRIEVAL

the Ypa (i.e. a user input “a camera” results in a relation between the terms
minox and camera).

The Missing state is reached if the slot-and-filler query contains unfilled
slots that are required to be filled before the database can be queried (in the
existing setup this is the case for the goods and services slot). Following a new
user input the dialogue manager could again move to any of the states.

The Inconsistency state is reached when a technical problem occurs. This
is a final state. The dialogue manager usually moves into this state when the
database has been shut down (or updated without restarting the Ypa).

A state diagram would contain transitions from any one state to any other.
An exception is the Inconsistency state, which is a final state with no transi-
tions to other states. But remember, that the user is free to add information
at any stage in the dialogue and is not restricted to choosing one of the sugges-
tions proposed by the system. Instead, the user could input some correction
(e.g. “no, I want an emergency dentist”) or a request to restart (e.g. “restart
system!”). Because we want to allow such input, we do not exclude any par-
ticular transition between high level dialogue states per se.

8.3.3 Dialogue Function

The dialogue function trans which maps a dialogue state and the user input
to a new dialogue state does not differ in principle from the UKSearch system.
The type of input expected from the user is exactly the same, either typed
input or a selection.

• If the user types an input, then the goal description is updated accord-
ingly by parsing the input and updating the slot-and-filler query. The
new dialogue state is calculated by selecting potential choices for the new
goal description (see below) and applying the necessary query and retrieve
functions.

• If the user selects a potential choice < Goal, Hist, Input >, then Goal is
the new goal description. This is equivalent to UKSearch.

Apart from the user input, the user can select system properties from lists
of predefined options (e.g. to force the system to use synonyms from WordNet
for query expansion etc.). These system properties are submitted together
with the input and integrated in the new goal description accordingly.

8.3.4 Calculation of Potential Choices

This is where there are quite obvious differences between UKSearch and the
Ypa. UKSearch simply matches the input against a domain model. In the
Ypa on the other hand we have (apart from the domain model) a structured
database and make assumptions about the types of information stored in that
database.

8 YPA - Searching Classified Directories 169

In UKSearch we had a dialogue manager that had no direct access to
the actual database of documents that the user searched. Instead a search
engine was applied, and the dialogue manager constructed potential query
modifications based on the knowledge encoded in the domain model. Here the
situation is different. The dialogue manager can actually query the database
and assess the effects of certain modifications to the result set. The potential
choices that are to be presented to the user reflect much more what the current
database has to offer. For example, before offering a choice to the user the
dialogue manager can submit the new query and see whether the size of the
result set would be acceptable.

Therefore, the calculation of the following steps that will lead to a set of
potential choices might in fact involve several internal calls to the database:

• Calculate appropriate modifications of the document properties.
• Calculate appropriate modifications of the system properties.
• Rank all query and system modifications.
• Select the highest ranked modifications and construct potential choices.

Unlike the UKSearch system, the Ypa is by default set up to not present
addresses unless the query is specific enough or one of the presented options
has been ticked. The administrator sets two thresholds max and min, where
max is the maximum number of matches to be displayed (we use max = 50)
and min is the minimum number of matches (we use min = 1). If there
are more than max matching documents for the current goal description,
the system will construct query refinements only. If there are less than min
matches, the system tries to find query relaxations.

Based on our experience we perform only simple relaxations or refinements
in order to not confuse the user, e.g. if the query consisted of two terms we
would not construct a query modification that is based on applying query
expansion to both query terms.

The query modification process is more customized than in the UKSearch
system due to the fact that we can make more assumptions about the doc-
uments (i.e. advertisements), so that our index tables are knowledge-rich in
the sense that they represent different aspects of a document such as location
information, payment methods etc. Each of these types of information can
be treated differently. The refinements and relaxations that we construct as
potential query modifications apply this additional knowledge.

Potential query refinements are constructed by exploring each one of the
following steps:

• Propose a single query term to be added to a particular slot (using the
domain model in the same way as we have seen it in UKSearch, i.e. in the
simplest case find a root node and propose the concepts in the daughter
nodes as additional query terms). The term is simply added to the existing
query encoded in the goal description. We do this only for the goods and
services slot.

170 INTELLIGENT DOCUMENT RETRIEVAL

• Change a single system property (e.g. constraining the use of the world
model(s), reducing the number of database tables to be accessed etc.).

• Select a single classification if all the query terms in the goods and services
slot match the classification (i.e. if all query terms have been identified
as concepts for a particular classification). The goal description is being
changed by adding the appropriate document property (the new query
matches all those documents that the original query matched and which
are classified under a specific classification). For example, the user might
have asked for “alarms in Ipswich”. A large number of advertisers exist,
classified under different business classifications. The system therefore sug-
gests that the user selects a specific classification (e.g. “Burglar alarms &
security systems”, “Car alarms & security”, “Fire alarms” etc.) to narrow
down the query.

• Check whether the location slot is empty. If so, the goal description will not
be changed. However, the dialogue manager is set up to request location
information from the user. The user is not required to follow this request.
(The dialogue manager can be set up to allow a number of possible slots
to be handled similarly.)

Potential query relaxations are constructed by exploring each one of the
following steps:

• Relax a single slot. That could mean that the content is ignored altogether
(e.g. propose matches that do not match the opening hours but everything
else), or it could be based on additional world knowledge as it is used for the
location information (e.g. propose the use of essex instead of colchester).r
All additional knowledge is incorporated in the World Model component
of the Ypa.

• Change a single system property (e.g. relaxing the use of the world
model(s), expanding the number of database tables to be accessed etc.).

• Propose matches for partial queries (an example of which is shown in Fig.
8.4).

• Propose a single query term to be replaced by a disjunction of terms (using
the synonyms in WordNet).

• Create a new goal description by replacing the content of the goods and
services slot by a single noun phrase selected from this slot (everything else
remains unchanged). Since we keep track of simple syntactic structures in
the user input (mainly noun phrases), we are able to extract individual
nouns or noun phrases from a slot.

The function choicerank ranks all query modifications that have been con-
sidered as potential choices (utilizing the ranking tables stored in the Ranking
Component). The highest ranked choices are presented to the user (we use a
maximum number max = 10). The Backend has detailed index tables that
allow the Ypa to assess what effect on the number of matches a particular
query modification would have.

8 YPA - Searching Classified Directories 171

The potential choices are then put together in a straightforward way and
passed to the dialogue manager to be encoded in the new dialogue state. It
has already been mentioned that the user just has to tick a box, and behind
the scenes the goal description is updated accordingly.

8.4 Implementational Issues

For the Ypa we were given the source data in electronic format. This data is
processed and stored in an Oracle database.

The Web-based online dialogue system runs as a Sicstus Prolog executable
accessed via sockets. Perl scripts pass the user requests from the browser to the
Sicstus system and return the answer once the system is finished. The robot as
well as most of the index construction programming is done in Perl making use
of existing modules (LWP, HTML, URI, Text etc.). For the indexing process
we also use the Brill tagger [18]. The online system uses the C interface to
WordNet.

9

Future Directions and Conclusions

The future directions will focus on three areas which will be discussed in this
chapter:

• Automatic adjustment of the domain model. We suggest the exploration of
ideas from collaborative filtering, i.e. logging a user’s search behaviour will
propose clues about how to update the concept hierarchies automatically
so that the system can present better suggestions when the next user comes
along.

• Dialogue management. It needs to be investigated how the presentation
of query modification suggestions can be optimized. This touches human
computer interaction issues.

• Evaluation. One interesting aspect to be investigated (and evaluated) in
the future is to find out how the methods introduced in this book can be
combined with other approaches.

We also see a possible application in the semi-automatic creation of term
hierarchies where the documents are processed as described and the resulting
domain models are then manually refined using appropriate tools.

Apart from that we need to stress, that our UKSearch experiments have so
far only involved HTML documents, but for non-HTML documents it should
be possible to use similar approaches as long as some layout analysis is applied
which preprocesses the documents in order to mark up the various types of
layout found in the documents.

9.1 Towards Evolving Domain Models

The task-based evaluations show that users strongly prefer a search system
which incorporates automatically constructed domain knowledge over a stan-
dard search engine. Nevertheless, although users in our experiments expressed
that they want some guidance in the search process, they also complained
about some query modification terms that are misleading or not very useful.

174 INTELLIGENT DOCUMENT RETRIEVAL

Automatically extracted knowledge has its advantages, the main one is
that such knowledge can be constructed rapidly. But the quality is not as
good as if it had been customized manually. As with any statistical approach
the model can only be as good as the data it is derived from. Naturally, there
are flaws. The two obvious ways around this would have been to manually
adjust the domain model, which is very expensive, or to apply user feedback
which has been shown to be not very effective since most users simply ignore
it (see for example [131]). A sensible approach seems to be a heterogeneous
one which allows user feedback but does not rely on it. We see the main future
direction in collaborative filtering techniques. Those are techniques in which
the behaviour of a user is observed by the system in order to assist the next
user with similar requests. One motivation is that “on intranets there is much
to be gained by optimizing the search engine, perhaps via feedback learning,
to accurately answer the top few queries” [48]. We propose to monitor the
user dialogues and adjust the domain model accordingly. Simply doing this
for every user individually seems to be of little use since we assume that even
very frequent user queries are hardly ever submitted twice by the same user.
Therefore we suggest to learn from a user in order to help the next user with
a similar request. Furthermore, unlike in classical collaborative filtering this
approach does not distinguish a number of user groups. We basically have
one large group of users, those who submit queries to the search engine of the
particular site. Thus, the idea is to improve the domain model of that site
rather than user profiles. This section presents some preliminary ideas that
will hopefully advance domain models such as those applied by the UKSearch
system.

Let us assume, a user submits a query to UKSearch running on the Essex
domain. The main focus shall be on that type of queries that triggers the
system to present query refinements. In order to get to a more specific query,
the dialogue component determines the “best” refinement terms and asks the
user to choose one. To use our running example, a query for “union” would
trigger the dialogue system to offer the listed choices, i.e. students union, euro-
pean union, christian union and trade. Any of those terms would constrain the
original query and result in a much smaller set of matching documents. What-
ever the user selects, the action is recorded and used to adjust the weights
associated with particular concept terms and relations between those concepts
in the domain model.

This differs from explicit relevance feedback [155, 23] in that the user is not
required to judge the relevance of query modification options or documents
but instead the user’s selections are being observed. The idea is similar to
the one described in [165] where implicit relevance feedback is used to update
the result set in an ad hoc search situation. If a user moves the mouse over
a document title, then it is interpreted as an expression of interest in the
particular document. However, here we only look at the actual user selections
to update the domain model.

9 Future Directions and Conclusions 175

In that sense, we can see the outlined approach as a particular application
of collaborative filtering. Collaborative filtering is based on identifying the
opinions and preferences of similar users in order to predict the preferences
and to recommend items to others as used in systems to recommend news
(e.g. GroupLens [126]) or movies (e.g. Video Recommender [69]). Collaborative
search has also been proposed for using similar past queries to automatically
expand new queries, e.g. [52] and [124] where documents that correspond well
to similar queries also provide feedback on the original query.

In our search framework the domain model is used to suggest a selection
of query refinement terms if the query matches a large number of documents.

Now assume, for every concept in the domain model the weights associated
with the branches originating in a node are equal and sum up to 1. These
weights change, if:

• a concept in a daughter node is offered and selected by the user (increase)
• a concept in a daughter node is offered and not selected (decrease).

This will only change weights of relations already in place. The result
is that the good parts of the domain model will gain importance, the rest
will be less and less relevant. But that does not allow the creation of new
links. However, imagine in our example query (“union”) the user ignores all
the options and inputs “students union societies”. This user will implicitly
introduce a link between union and students union societies. This link will
gain importance if this sequence of user inputs is observed a number of times.
Thresholds could then be introduced to delete nodes from a hierarchy in the
domain model or to include new ones.

To make the ideas a bit more concrete we shall look at Fig. 9.1 which
displays one hierarchy of the originally constructed domain model (we use
single concepts to represent a node in the model).

While the domain model essentially remains as it is, the weights are ad-
justed over time and after a trial period the user would get a different picture.
Figure 9.2 shows how the encoded relations may have changed over time.
For example, christian union does not seem to have attracted any interest.
The weight dropped so that this concept is no longer part of the hierarchy.
However, entering the phrase as a query could bring it back. Moreover, the
term welfare which refers to “welfare services” offered by the students’ union
has become more important and is offered as a possible choice following the
user query “union”. The two terms union and welfare have always been re-
lated concepts, but the relevance of this branch compared to the other four
displayed in Fig. 9.1 was too low to be displayed in the original setup.

Note that the outlined system setup does not restrict us to any domain
knowledge construction method in particular. The automated adjustment
process is generic and one could easily substitute the actual model with any
domain model that has a similar structure, e.g. [134, 9, 99].

176 INTELLIGENT DOCUMENT RETRIEVAL

union

shops

welfare

bars

christian_union

european_union

trade

entertainments

human_rights

trade_union

social_studies

Fig. 9.1. Original concept tree for example query “union”

union

trade

human_rights

trade_union

students_union

welfare

bars

welfare

shops

entertainments
european_union

Fig. 9.2. Concept tree for example query “union” after trial period

9.2 Dialogue Management

Currently, the dialogue system presents the user with a flat list of concepts
that can serve as query modification terms. Those concepts are extracted from

9 Future Directions and Conclusions 177

the automatically constructed domain models using some ranking function.
However, to support the user in the process of exploring the document col-
lection one could think of a much more advanced interface that presents the
concepts in a wider context, similar to the graph representation in the DOPE
browser [148], in TouchGraph’s1 visual browsers or the type of semantic graphs
used in the Infomap Project2 to visualize words and their relationships.

In this context it would mean, instead of selecting single concepts one
might present entire hierarchies so that a user can navigate through some
active map of linked concepts. The “current position” in the hierarchies would
need to be highlighted. Different hierarchies of the same domain model could
be linked by nodes that represent the same sets of concepts. One could avoid
some of the problems involved in selecting the best query modifications by
letting the user decide. However, this is quite a complex area which requires
careful consideration of human computer interaction aspects. Therefore it has
been left as a future issue.

Obviously, research into dialogue management is not restricted to our sim-
plistic view of what a dialogue manager should be capable of and what we
understand as “dialogue” in this context. There are numerous research direc-
tions and we presented a narrow picture that seems sufficient for our task, the
search in collections of partially structured documents.

9.3 An Outlook on Future Evaluations

We have learned a lot about advantages and disadvantages of the techniques
introduced in this book in a set of controlled experiments. The ultimate test of
these extraction and search methods will be large scale experiments involving
real users on some permanently installed search engines. However, the dif-
ficulty is to compare the results with alternative approaches. For any future
comparison between alternative techniques we see the TREC interactive track
framework model as a sensible approach. The principles as outlined in [67] are
useful for any such future evaluations too:

• an interactive search task - question answering
• 8 questions - short answers
• 16 searchers - minimum
• a newswire/newspaper collection to be searched
• a required set of questionnaires.

Future task-based evaluations will basically follow the procedure that has
been used to evaluate UKSearch for the Essex and BBC News domains. In
addition to the document collections we would need a corpus of existing user

1http://www.touchgraph.com
2http://infomap.stanford.edu/graphs/

178 INTELLIGENT DOCUMENT RETRIEVAL

queries. A useful source would be the log files of queries submitted through
an existing Web search or intranet search engine at the particular site.

However, other experiments will need to address the issues of presenting
search options and search results in a graphical user interface. We found evi-
dence for and against the fact that a simple search interface might be prefered
to one that displays options alongside search results. But a more sophisticated
interface will make this an even more complex task. Here we enter (again) the
research area of human computer interaction which will have to answer the
question of how to get measurable results concerning user perception and
preferences.

9.4 Conclusions

Search engine technology is an exciting research area. We simply picked one
aspect from this rather large field. We started by discussing some common
problems that arise when searching document collections. We focused on such
document collections that can be characterized as partially structured. Exam-
ples are Web sites or intranets.

Such document collections can vary a lot in size and how much structure
they carry. What they have in common is that they typically do have some
structure and that they cover a limited range of topics. The second point is
significantly different from the Web in general.

The presented work aims at assisting a user in the search process so that
information can be located much easier. The type of search system that we
propose goes beyond a standard search engine. Apart from displaying the best
matches in some ranked order it can also suggest ways of refining or relaxing
the query. We guide a user through the information available.

In order to suggest sensible query modifications we would need to know
what the documents are about. Explicit knowledge about the document col-
lection that has been encoded in some electronic form is what we need. How-
ever, typically such knowledge is not available. So we decided to construct it
automatically.

How can this be achieved? A tremendous amount of implicit knowledge is
stored in the markup of documents. But not much has been done to use this
particular knowledge. This book described a method of automatically extract-
ing such knowledge and organizing it in a domain model. It also introduced a
simple dialogue system that can apply the extracted knowledge as part of an
online search system.

The book has demonstrated three main aspects:

• We have shown how markup structure can be used to build domain models
quickly and fully automatically.

• We have shown how to apply the knowledge that has been extracted in
the domain model construction step. It was demonstrated how a generic

9 Future Directions and Conclusions 179

dialogue manager can utilize such knowledge to assist a user by refining
the choices as he or she searches the document collection.

• Two implemented search systems - UKSearch and the Ypa - have demon-
strated the usefulness of this approach. The systems have been imple-
mented to work on different document collections. They focused on two
aspects: UKSearch demonstrated the use of the automatically constructed
domain models in the search process. The Ypa system (which was dis-
cussed more briefly) was more concerned with the dialogue system. We
have also presented detailed evaluation results for UKSearch.

With the methods introduced in this book it should be possible to build
dialogue-based search systems rapidly and fully automatically for a variety
of partially structured document collections. Nevertheless, there is plenty of
scope for further research.

References

1. S. Abiteboul. Querying Semi-Structured Data (invited talk). In Proceedings
of the 6 th International Conference on Database Theory (ICDT), pages 1–18,
Delphi, Greece, 1997.

2. R. Agarwal. Towards a PURE Spoken Dialogue System for Information Access.
In Proceedings of the ACL/EACL Workshop on ”Interactive Spoken Dialog
Systems: Bringing Speech and NLP Together in Real Applications”, pages 90–
97, Madrid, 1997.

3. K. Ahmad, M. Tariq, B. Vrusias, and C. Handy. Corpus-Based Thesaurus
Construction for Image Retrieval in Specialist Domains. In F. Sebastiani,
editor, Proceedings of the 25 th European Colloquium on Information Retrieval
Research (ECIR’03), Lecture Notes in Computer Science 2633, pages 502–510,
Pisa, 2003. Springer Verlag.

4. H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall, P. H. Lewis, and N. R.
Shadbolt. Automatic Ontology-Based Knowledge Extraction from Web Doc-
uments. IEEE Intelligent Systems, 18(1):14–21, January/February 2003.

5. J. Allen, L. Schubert, G. Ferguson, P. Heeman, C. Hwang, T. Kato, M. Light,
N. Martin, B. Miller, M. Poesio, and D. Traum. The TRAINS project: a case
study in building a conversational planning agent. Journal of Experimental
and Theoretical Artificial Intelligence, 7:7–48, 1995.

6. E. Amitay. Using common hypertext links to identify the best phrasal descrip-
tion of target web documents. In Proceedings of the SIGIR’98 Post-ConferenceSS
Workshop on Hypertext Information Retrieval for the Web, Melbourne, 1998.

7. P. Anick. Using Terminological Feedback for Web Search Refinement - A Log-
based Study. In Proceedings of the 26 th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 88–
95, Toronto, Canada, 2003.

8. P. G. Anick. Automatic Construction of Faceted Terminological Feedback for
Context-Based Information Retrieval. PhD thesis, Brandeis University, 1999.

9. P. G. Anick and S. Tipirneni. The paraphrase search assistant: terminological
feedback for iterative information seeking. In Proceedings of the 22 nd An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 153–159, Berkeley, CA, 1999.

182 References

10. G. Attardi, A. Gullı, and F. Sebastiani. Automatic Web page categorization´
by link and context analysis. In C. Hutchison and G. Lanzarone, editors,
Proceedings of THAI-99, European Symposium on Telematics, Hypermedia andTT
Artificial Intelligence, pages 105–119, Varese, Italy, 1999.

11. H. Aust, M. Oerder, F. Seide, and V. Steinbiss. The Philips automatic train
timetable information system. Speech Communication, 17:249–262, 1995.

12. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

13. M. Beaulieu, H. Fowkes, N. Alemayehu, and M. Sanderson. Interactive Okapi
at Sheffield - TREC-8. In Proceedings of the Eighth Text Retrieval Conference
(TREC-8), pages 689–698, NIST Special Publication 500-246, 1999.

14. S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder.
Hourly Analysis of a Very Large Topically Categorized Web Query Log. In
Proceedings of the 27 th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 321–328, Sheffield,
2004.

15. D. J. Bell and I. Ruthven. Searcher’s Assessments of Task Complexity for
Web Searching. In Proceedings of the 26 th European Conference on Informa-
tion Retrieval (ECIR’04), Lecture Notes in Computer Science, pages 57–71,
Sunderland, 2004. Springer Verlag.

16. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 5:34–43, May 2001.

17. T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language
(XML) 1.0. W3C Recommendation, 1998.

18. E. Brill. A simple rule-based part of speech tagger. In Proceedings of the
Third Conference on Applied Natural Language Processing, ACL, pages 152–
155, Trento, Italy, 1992.

19. E. Brill. Some advances in rule-based part of speech tagging. In Proceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages
722–727, Seattle, Wa., 1994.

20. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. In Proceedings of the Seventh International World Wide Web Confer-
ence (WWW7), pages 107–117, Brisbane, 1998.

21. A. Broder. A Taxonomy of Web Search. SIGIR Forum, 36(2):3–10, 2002.
22. P. Bruza, R. McArthur, and S. Dennis. Interactive Internet search: keyword,

directory and query reformulation mechanisms compared. In Proceedings of
the 23 rd Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 280–287, Athens, Greece, 2000.

23. C. Buckley, G. Salton, and J. Allan. The effect of adding relevance informa-
tion in a relevance feedback environment. In Proceedings of the 17 th Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation, pages 292–301, 1994.

24. P. Buneman. Semistructured Data (invited tutorial). In Proceedings of the Six-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems, pages 117–121, Tucson, Arizona, 1997.

25. C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Image Segmen-
tation Using Expectation-Maximization and Its Application to Image Query-
ing. IEEE Transactions on Analysis and Machine Intelligence, 24(8):1026–
1038, 2002.

References 183

26. J. Chai, V. Horvath, N. Nicolov, M. Stys, N. Kambhatla, W. Zadrozny, and
P. Melville. Natural Language Assistant - A Dialog System for Online Product
Recommendation. AI Magazine, 23(2):63–75, 2002.

27. J. Chai, J. Lin, W. Zadrozny, T. Ye, M. Stys-Budzikowska, V. Horvath,
N. Kambhatla, and C. Wolf. The Role of a Natural Language Conversational
Interface in Online Sales: A Case Study. International Journal of Speech Tech-
nology, 4:285–295, 2001.

28. S. Chakrabarti. Mining the Web - Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, 2003.

29. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, S.R. Kumar, P. Raghavan,
S. Rajagopalan, and A. Tomkins. Hypersearching the Web. Scientific Ameri-
can, 6:54–60, June 1999.

30. S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and J. Klein-
berg. Automatic Resource Compilation by Analyzing Hyperlink Structure and
Associated Text. In Proceedings of the Seventh International World Wide Web
Conference (WWW7), pages 65–74, Brisbane, 1998.

31. C. H. Chang and C. C. Hsu. Enabling Concept-Based Relevance Feedback for
Information Retrieval on the WWW. IEEE Transactions on Knowledge and
Data Engineering, 11(4):595–609, July/August 1999.

32. H. Chen and S. T. Dumais. Bringing order to the web: Automatically catego-
rizing search results. In Proceedings of CHI’00, Human Factors in Computing
Systems, pages 145–152, Den Haag, 2000.

33. M. Chen, M. Hearst, J. Hong, and J. Lin. Cha-Cha: A System for Organizing
Intranet Search Results. In Proceedings of the 2 nd USENIX Symposium on
Internet Technologies and Systems (USITS), pages 47–58, Boulder, CO, 1999.

34. S.-L. Chuang and L.-F. Chien. Enriching Web taxonomies through subject cat-
egorization of query terms from search engine logs. Decision Support Systems,
35:113–127, 2003.

35. F. Ciravegna, A. Dingli, D. Guthrie, and Y. Wilks. Integrating Information to
Bootstrap Information Extraction from Web Sites. In Proceedings of the IJCAI-
03 Workshop on Information Integration on the Web, pages 9–14, Acapulco,
2003.

36. J. Cowie and Y. Wilks. Information Extraction. In R. Dale, H. Moisl, and
H. Somers, editors, Handbook of Natural Language Processing, pages 241–260.
Marcel Dekker, New York, 2000.

37. N. Craswell, D. Hawking, J. Thom, T. Upstill, R. Wilkinson, and M. Wu.
TREC11 Web and Interactive Tracks at CSIRO. In Proceedings of the Eleventh
Text Retrieval Conference (TREC-2002), NIST Special Publication 500-251,
2003.

38. N. Craswell, D. Hawking, R. Wilkinson, and M. Wu. TREC10 Web and Inter-
active Tracks at CSIRO. In Proceedings of the Tenth Text Retrieval Conference
(TREC-2001), pages 151–158, NIST Special Publication 500-250, 2002.

39. N. Craswell, D. Hawking, R. Wilkinson, and M. Wu. Overview of the TREC
2003 Web Track. In Proceedings of the Twelfth Text Retrieval Conference
(TREC 2003), pages 78–92, NIST Special Publication 500-255, 2004.

40. H. Cunningham. Information Extraction - a User Guide. Research memo CS-
99-07, Institute for Language, Speech and Hearing (ILASH), and Department
of Computer Science, University of Sheffield, 1999.

184 References

41. J. R. Curran and R. K. Wang. Transformation-Based Learning for Automatic
Translation from HTML to XML. In Proceedings of the Fourth Australasian
Document Computing Symposium, Coffs Harbour, Australia, 1999.

42. D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/Gather:
A Cluster-based Approach to Browsing Large Document Collections. In Pro-
ceedings of the Fifteenth Annual International ACM SIGIR Conference on Re-SS
search and Development in Information Retrieval (SIGIR’92), pages 318–329,
Copenhagen, Denmark, 1992.

43. A. De Roeck, U. Kruschwitz, P. Neal, P. Scott, S. Steel, R. Turner, and
N. Webb. YPA - an intelligent directory enquiry assistant. BT Technology
Journal, 16(3):145–155, 1998.

44. A. De Roeck, U. Kruschwitz, P. Scott, S. Steel, R. Turner, and N. Webb.
The YPA - An Assistant for Classified Directory Enquiries. In B. Azvine,
N. Azarmi, and D. Nauck, editors, Intelligent Systems and Soft Computing:
Prospects, Tools and Applications, Lecture Notes in Artificial Intelligence 1804,
pages 239–258. Springer Verlag, 2000.

45. E. Desmontils and C. Jacquin. Indexing a Web Site with a Terminology Ori-
ented Ontology. In Proceedings of the Semantic Web Working Symposium
(SWWS’2001), pages 549–565, Stanford, 2001.

46. S. Dumais and H. Chen. Hierarchical Classification of Web Content. In Proceed-
ings of the 23 rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 256–263, Athens, Greece, 2000.

47. N. Eiron and K. S. McCurley. Analysis of anchor text for web search. In Pro-
ceedings of the 26 th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 459–460, Toronto, Canada,
2003.

48. R. Fagin, R. Kumar, K. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin,
and D. P. Williamson. Searching the Workplace Web. In Proceedings of the
Twelfth International World Wide Web Conference (WWW2003), pages 366–
375, Budapest, 2003.

49. M. Fasli and U. Kruschwitz. Using Implicit Relevance Feedback in a Web
Search Assistant. In N. Zhong, Y. Yao, J. Liu, and S. Ohsuga, editors, Web
Intelligence: Research and Development, Lecture Notes in Artificial Intelligence
2198, pages 356–360. Springer Verlag, 2001.

50. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
1998.

51. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-
Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE
Intelligent Systems, 16(2):38–45, March/April 2001.

52. L. Fitzpatrick and M. Dent. Automatic Feedback Using Past Queries: Social
Searching? In Proceedings of the 20 th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 306–313,
Philadelphia, PA, 1997.

53. S. Flank. A layered approach to NLP-based Information Retrieval. In Pro-
ceedings of the 36 th ACL and the 17 th COLING Conferences, pages 397–403,
Montreal, 1998.

54. A. Fujii and T. Ishikawa. Utilizing the World Wide Web as an Encyclopedia:
Extracting Term Descriptions from Semi-Structured Texts. In Proceedings of

References 185

the 38 th Annual Meeting of the Association for Computational Linguistics,
pages 488–495, Hong Kong, 2000.

55. J. Furnkranz. Exploiting Structural Information for Text Classification on the¨
WWW. In Proceedings of the 3 rd Symposium on Intelligent Data Analysis
(IDA-99), pages 487–498, Amsterdam, 1999. Springer Verlag.

56. A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening WORD-
NET with DOLCE. AI Magazine, 24(3):13–24, 2003.

57. E. J. Glover, D. M. Pennock, S. Lawrence, and R. Krovetz. Inferring Hie-
rarchical Descriptions. In Proceedings of 2002 ACM CIKM International Con-
ference on Information and Knowledge Management, pages 507–514, McLean,
Virginia, 2002.

58. E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M. Pennock, and G. W. Flake.
Using Web Structure for Classifying and Describing Web Pages. In Proceed-
ings of the Eleventh International World Wide Web Conference (WWW2002),
pages 562–569, Honolulu, 2002.

59. S. J. Green. Automated link generation: can we do better than term repeti-
tion? In Proceedings of the Seventh International World Wide Web Conference
(WWW7), pages 75–84, Brisbane, 1998.

60. N. Guarino, C. Masolo, and G. Vetere. OntoSeek: Content-Based Access to
the Web. IEEE Intelligent Systems, 14(3):70–80, May/June 1999.

61. C. Gutwin, G. Paynter, I. Witten, C. Nevill-Manning, and E. Frank. Improving
browsing in digital libraries with keyphrase indexes. Decision Support Systems,
27:81–104, 1999.

62. D. Hawking and N. Craswell. Overview of the TREC-2001 Web Track. In
Proceedings of the Tenth Text Retrieval Conference (TREC-2001), pages 61–
67, NIST Special Publication 500-250, 2002.

63. D. Hawking, E. Voorhees, N. Craswell, and P. Bailey. Overview of the TREC-8
Web Track. In Proceedings of the Eighth Text Retrieval Conference (TREC-8),
pages 131–150, NIST Special Publication 500-246, 1999.

64. J. Heflin and J. Hendler. A Portrait of the Semantic Web in Action. IEEE
Intelligent Systems, 16(2):54–59, March/April 2001.

65. M. R. Henzinger, R. Motwani, and C. Silverstein. Challenges in Web Search
Engines. SIGIR Forum, 36(2):11–22, 2002.

66. W. Hersh. TREC 2002 Interactive Track Report. In Proceedings of the Eleventh
Text Retrieval Conference (TREC-2002), NIST Special Publication 500-251,
2003.

67. W. Hersh and P. Over. TREC-9 Interactive Track Report. In Proceedings
of the Ninth Text Retrieval Conference (TREC-9), pages 41–50, NIST Special
Publication 500-249, 2001.

68. W. Hersh, L. Sacherek, and D. Olson. Observations of Searchers: OHSU TREC
2001 Interactive Track. In Proceedings of the Tenth Text Retrieval Conference
(TREC-2001), pages 434–441, NIST Special Publication 500-250, 2002.

69. W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evalu-
ating choices in a virtual community of use. In Proceedings of the Conference
on Human Factors in Computing Systems CHI’95, pages 194–201, New York,
1995. ACM.

70. J. Hodgson. Do HTML Tags Flag Semantic Content? IEEE Internet Comput-
ing, 5(1):20–25, January/February 2001.

186 References

71. B. Hyusein and A. Patel. Web Document Indexing and Retrieval. In A. F.
Gelbukh, editor, Proceedings of the 4 th International Conference of Compu-
tational Linguistics and Intelligent Text Processing (CICLing 2003), Lecture
Notes in Computer Science 2588, pages 573–579, Mexico-City, 2003. Springer
Verlag.

72. International Organization for Standardization. ISO/IEC 13250:2002 Topic
Maps, 2002.

73. B. J. Jansen, J. Bateman, and T. Saracevic. Real life information retrieval: A
study of user queries on the web. SIGIR Forum, 32(1):5–17, 1998.

74. H. Joho, C. Coverson, M. Sanderson, and M. Beaulieu. Hierarchical Presen-
tation of Expansion Terms. In Proceedings of ACM Symposium on Applied
Computing (SAC’2002), pages 645–649, Madrid, 2002.

75. H. Joho, M. Sanderson, and M. Beaulieu. A Study of User Interaction with a
Concept-based Interactive Query Expansion Support Tool. In Proceedings of
the 26 th European Conference on Information Retrieval (ECIR’04), Lecture
Notes in Computer Science, pages 42–56, Sunderland, 2004. Springer Verlag.

76. J. S. Justeson and S. M. Katz. Technical terminology: some linguistic properties
and an algorithm for identification in text. Natural Language Engineering,
1(1):9–27, 1995.

77. J. Karlgren. Stylistic Experiments for Information Retrieval. PhD thesis,
Swedish Institute of Computer Science, 2000.

78. B. Katz, J. Lin, and S. Felshin. Gathering Knowledge for a Question An-
swering System from Heterogeneous Information Sources. In Proceedings of
the ACL/EACL Workshop on Human Language Technology and Knowledge
Management, Toulouse, 2001.

79. B. Katz, D. Yure, J. Lin, S. Felshin, R. Schulman, A. Ilik, A. Ibrahim, and
P. Osafo-Kwaako. Integrating Web Resources and Lexicons into a Natural
Language Query System. In Proceedings of the International Conference on
Multimedia Computing and Systems (IEEE ICMCS ’99), pages 255–261, Flo-
rence, 1999.

80. S. M. Katz. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35(3):400–401, 1987.

81. C.-P. Klas and N. Fuhr. A new Effective Approach for Categorizing Web
Documents. In Proceedings of the 22 nd BCS-IRSG 2000 Colloquium on IR
Research, Cambridge, 2000.

82. J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In
Proceedings of the 9 th ACM-SIAM Symposium on Discrete Algorithms, pages
668–677. ACM, 1998.

83. C. A. Knoblock, J. L. Ambite, S. Minton, M. Kolahdouzan, M. Muslea, J. Oh,
and S. Thakkar. Integrating the World: The WorldInfo Assistant. In Proceed-
ings of the International Conference on Artificial Intelligence (IC-AI), pages
1355–1361, Las Vegas, 2001.

84. C. A. Knoblock, S. Minton, J. L. Ambite, M. Muslea, J. Oh, and M. Frank.
Mixed-Initiative, Multi-Source Information Assistants. In Proceedings of the
Tenth International World Wide Web Conference (WWW10), pages 697–707,
Hong Kong, 2001.

References 187

85. R. Kraft and J. Zien. Mining Anchor Text for Query Refinement. In Proceedings
of the 13 th International World Wide Web Conference (WWW2004), pages
666–674, New York, 2004.

86. U. Kruschwitz. UKSearch - Web Search with Knowledge-Rich Indices. In
Proceedings of the AAAI-2000 Workshop on Artificial Intelligence for Web
Search, Technical Report WS-00-01, pages 41–45, Austin, TX, 2000. AAAI
Press.

87. U. Kruschwitz. A Rapidly Acquired Domain Model Derived from Markup
Structure. In Proceedings of the ESSLLI’01 Workshop on Semantic Knowledge
Acquisition and Categorisation, Helsinki, 2001.

88. U. Kruschwitz. Dialogue for Web Search Utilizing Automatically Acquired Do-
main Knowledge. In V. Matoušek, P. Mautner, R. Mouˇˇ cek, and K. Tauˇˇ ser, edi-ˇ
tors, Text, Speech, and Dialogue. Fourth International Conference (TSD2001),
Lecture Notes in Artificial Intelligence 2166, pages 365–372. Springer Verlag,
2001.

89. U. Kruschwitz. Exploiting Structure for Intelligent Web Search. In Proceedings
of the 34 th Hawaii International Conference on System Sciences (HICSS),
pages 1356–1364, Maui, Hawaii, 2001. IEEE.

90. U. Kruschwitz. An Adaptable Search System for Collections of Partially Struc-
tured Documents. IEEE Intelligent Systems, 18(4):44–52, July/August 2003.

91. U. Kruschwitz. Automatically Acquired Domain Knowledge for ad hoc Search:
Evaluation Results. In Proceedings of the 2003 International Conference on
Natural Language Processing and Knowledge Engineering (NLP-KE’03), pages
525–532, Beijing, 2003. IEEE.

92. U. Kruschwitz and H. Al-Bakour. Users Want More Sophisticated Search
Assistants - Results of a Task-Based Evaluation. Journal of the American
Society for Information Science and Technology (JASIST), 2005. To appear.

93. U. Kruschwitz, A. De Roeck, P. Scott, S. Steel, R. Turner, and N. Webb. Ex-
tracting Semistructured Data - Lessons Learnt. In Natural Language Process-
ing - NLP2000: Second International Conference, Lecture Notes in Artificial
Intelligence 1835, pages 406–417. Springer Verlag, 2000.

94. N. Kushmerick, D. Weld, and B. Doorenbos. Wrapper Induction for Informa-
tion Extraction. In Proceedings of IJCAI-97, pages 729–735, Nagoya, 1997.77

95. S. Larsson and D. Traum. Information state and dialogue management in the
TRINDI Dialogue Move Engine Toolkit. Natural Language Engineering, 6(3-
4):323–340, 2000. Special Issue on Best Practice in Spoken Language Dialogue
Systems Engineering.

96. S. Lawrence, C. L. Giles, and K. Bollacker. Digital libraries and autonomous
citation indexing. IEEE Computer, 32(6):67–71, 1999.

97. S. Lawrence and C. Lee Giles. Accessibility of information on the web. Nature,
400(July 8):107–109, 1999.

98. D. Lawrie and W. B. Croft. Discovering and Comparing Topic Hierarchies. In
Proceedings of RIAO’2000, pages 314–330, Paris, 2000.

99. D. J. Lawrie and W. B. Croft. Generating Hierarchical Summaries for Web
Searches. In Proceedings of the 26 th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 457–458,
Toronto, Canada, 2003.

188 References

100. A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Infor-
mation Sources Using Source Descriptions. In Proceedings of the 22 nd VLDB
Conference, pages 251–262, Mumbai (Bombay), India, 1996.

101. D. D. Lewis and K. Sparck Jones. Natural language processing for information¨
retrieval. Communications of the ACM, 39(1):92–101, 1996.MM

102. Y. Li. Toward a Qualitative Search Engine. IEEE Internet Computing, 2(4):24–
29, July/August 1998.

103. B. Liu, C. W. Chin, and H. T. Ng. Mining Topic-Specific Concepts and Def-
initions on the Web. In Proceedings of the Twelfth International World Wide
Web Conference (WWW2003), pages 251–260, Budapest, 2003.

104. A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An Infrastructure
for Searching, Reusing and Evolving Distributed Ontologies. In Proceedings of
the Twelfth International World Wide Web Conference (WWW2003), pages
439–448, Budapest, 2003.

105. A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Ontologies for
Enterprise Knowledge Management. IEEE Intelligent Systems, 18(2):26–33,
March/April 2003.

106. A. Maedche and S. Staab. Ontology Learning for the Semantic Web. IEEE
Intelligent Systems, 16(2):72–79, March/April 2001.

107. M. Margennis and C. J. van Rijsbergen. The potential and actual effectiveness
of interactive query expansion. In Proceedings of the 20 th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 324–332, Philadelphia, PA, 1997.

108. S. McGlashan, N. Fraser, N. Gilbert, E. Bilange, P. Heisterkamp, and N. Youd.
Dialogue Management for Telephone Information Systems. In Proceedings of
the International Conference on Applied Language Processing, pages 245–246,
Trento, Italy, 1992.

109. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A
Database Management System for Semistructured Data. SIGMOD Record,
26(3):50–66, 1997.

110. M. Michalowski, J. L. Ambite, S. Thakkar, R. Tuchinda, C. A. Knoblock, and
S. Minton. Retrieving and Semantically Integrating Heterogeneous Data from
the Web. IEEE Intelligent Systems, 19(3):72–79, May/June 2004.

111. D. S. Modha and S. Spangler. Clustering hypertext with applications to web
searching. In Proceedings of ACM Hypertext Conference, pages 143–152, San
Antonio, TX, 2000.

112. D. Moldovan, R. Girju, and V. Rus. Domain-Specific Knowledge Acquisition
from Text. In Proceedings of the Applied Natural Language Processing Confer-
ence (ANLP-2000), pages 268–275, Seattle, WA, 2000.

113. A. Müller, J. D¨¨ orre, P. Gerstl, and R. Seiffert. The TaxGen Framework: Au-¨
tomating the Generation of a Taxonomy for a Large Document Collection. In
Proceedings of the 32 nd Hawaii International Conference on System Sciences
(HICSS), page 2034, Maui, Hawaii, 1999. IEEE.

114. G. Navarro. Approximate Text Searching. PhD thesis, Universidad de Chile,
1998.

115. M.-J. Nederhof, G. Bouma, R. Koeling, and G. van Noord. Grammatical
analysis in the OVIS spoken-dialogue system. In Proceedings of the ACL/EACL
Workshop on ”Interactive Spoken Dialog Systems: Bringing Speech and NLP
Together in Real Applications”, Madrid, 1997.

References 189

116. R. Osdin, I. Ounis, and R. W. White. Using Hierarchical Clustering and
Summarization Approaches for Web Retrieval: Glasgow at the TREC 2002
Interactive Track. In Proceedings of the Eleventh Text Retrieval Conference
(TREC-2002), NIST Special Publication 500-251, 2003.

117. S. M. Pahlevi and H. Kitagawa. Conveying Taxonomy Context for Topic-
Focused Web Search. Journal of the American Society for Information Science
and Technology (JASIST), 56(2):173–188, 2005.

118. S. Parent, B. Mobasher, and S. Lytinen. An Adaptive Agent for Web Explo-
ration Based on Concept Hierarchies. In Proceedings of the 9 th International
Conference on Human Computer Interaction (HCI), pages 903–907, New Or-
leans, 2001.

119. G. W. Paynter, I. H. Witten, S. J. Cunningham, and G. Buchanan. Scalable
browsing for large collections: a case study. In Proceedings of the 5 th ACM
Conference on Digital Libraries, pages 215–223, 2000.

120. J. Peckham. A new generation of spoken dialogue systems: results and lessons
from the SUNDIAL project. In Proceedings of the 3 rd European Conference on
Speech Communication and Technology, pages 33 – 40, Berlin, Germany, 1993.

121. J. M. Pierre. On the Automated Classification of Web Sites. Linkoping Elec-¨
tronic Articles in Computer and Information Science, 6(1), 2001.

122. M. F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137,
1980.

123. Y. Qiu and H. P. Frei. Concept Based Query Expansion. In Proceedings of
the 16 th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 160–169, Pittsburgh, Pennsylvania,
1993.

124. V. V. Raghavan and H. Sever. On the reuse of past optimal queries. In
Proceedings of the Eighteenth Annual International ACM SIGIR ConferenceSS
on Research and Development in Information Retrieval, Feedback Methods,
pages 344–350, 1995.

125. L. F. Rau. Conceptual information extraction and retrieval from natural lan-
guage input. In Proceedings RIAO-88: Conference on User-Oriented, Content-
Based, Text and Image Handling, pages 424–437, Cambridge, MA, 1988.

126. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: An
Open Architecture for Collaborative Filtering of Netnews. In Proceedings of
ACM CSCW’94 Conference on Computer-Supported Cooperative Work, pages
175–186, 1994.

127. B. Rosario and M. Hearst. Classifying the Semantic Relations in Noun Com-
pounds via a Domain-Specific Lexical Hierarchy. In Proceedings of the 2001
Conference on Empirical Methods in Natural Language Processing (EMNLP
2001), pages 82–90, Pittsburgh, PA, 2001.

128. D. E. Rose and D. Levinson. Understanding User Goals in Web Search. In Pro-
ceedings of the 13 th International World Wide Web Conference (WWW2004),
pages 13–19, New York, 2004.

129. D. Roussinov, K. Tolle, M. Ramsay, and H. Chen. Interactive Internet Search
through Automatic Clustering: an Empirical Study. In Proceedings of the 22 nd

Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 289–290, Berkeley, CA, 1999.

130. A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Shern, K. Lenzo,
W. Xu, and A. Oh. Creating natural dialogs in the Carnegie Mellon Com-

190 References

municator system. In Proceedings of Eurospeech, pages 1531–1534, Budapest,
1999.

131. I. Ruthven, A. Tombros, and J. M. Jose. A Study on the Use of Summaries
and Summary-based Query Expansion for a Question-answering Task. In Pro-
ceedings of the 23 rd European Colloquium on Information Retrieval Research
(ECIR’01), pages 41–53, Darmstadt, 2001.

132. A. Sahuguet and F. Aznavant. Looking at the Web through XML glasses. In
Proceedings of the 4 th International Conference on Cooperative Information
Systems (CoopIS’99), pages 148–159, Edinburgh, 1999.

133. G. Salton and M. J. McGill, editors. Introduction to Modern Information
Retrieval. McGraw-Hill Book Company, New York, 1983.

134. M. Sanderson and B. Croft. Deriving concept hierarchies from text. In Proceed-
ings of the 22 nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 206–213, Berkeley, CA, 1999.

135. B. Santorini. Part-of-speech tagging guidelines for the Penn Treebank Project.
Technical report MS-CIS-90-47, Department of Computer and Information Sci-
ence, University of Pennsylvania, 1990.

136. J. Savoy and J. Picard. Report on the TREC-8 Experiment: Searching on the
Web and in Distributed Collections. In Proceedings of the Eighth Text Retrieval
Conference (TREC-8), pages 229–240, NIST Special Publication 500-246, 1999.

137. N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and M. C. Schraefel. CS AKTive
Space, or How we Learned to Stop Worrying and Love the Semantic Web. IEEE
Intelligent Systems, 19(3):72–79, May/June 2004.

138. C. Silverstein, M. Henzinger, and H. Marais. Analysis of a Very Large AltaVista
Query Log. Digital SRC Technical Note 1998-014, 1998.

139. A. Singhal and M. Kaszkiel. A Case Study in Web Search using TREC Algo-
rithms. In Proceedings of the Tenth International World Wide Web Conference
(WWW10), pages 708–716, Hong Kong, 2001.

140. A. F. Smeaton. Using NLP or NLP Resources for Information Retrieval Tasks.
In T. Strzalkowski, editor, Natural Language Information Retrieval, pages 99–
111. Kluwer Academic Publishers, 1997.

141. D. Smith and M. Lopez. Information extraction for semi-structured documents.
In Proceedings of the ”Workshop on Management of Semi-Structured Data”,
pages 60–66, Tucson, Arizona, 1997.

142. D. Smith and M. Lopez. Information finding and filtering for collections of
semi-structured documents. In Proceedings of INFORSID XV, pages 353–367,VV
Toulouse, 1997.

143. S. Soderland. Learning Information Extraction Rules for Semi-Structured and
Free Text. Machine Learning, 34(1-3):233–272, 1999.

144. R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning Important Models for
Web Page Blocks based on Layout and Content Analysis. SIGKDD Explo-
rations Newsletter, 6(2):14–23, 2004.

145. K. Spärck Jones. Document Retrieval: Shallow Data, Deep Theories; Histor-¨
ical Reflections, Potential Directions. In F. Sebastiani, editor, Proceedings of
the 25 th European Colloquium on Information Retrieval Research (ECIR’03),
Lecture Notes in Computer Science 2633, pages 1–11, Pisa, 2003. Springer
Verlag.

146. T. Strzalkowski, L. Guthrie, J. Karlgren, J. Leistensnider, F. Lin, J. Perez-
Carballo, T. Straszheim, J. Wang, and J. Wilding. Natural Language Infor-

References 191

mation Retrieval: TREC-5 Report. In Proceedings of the Fifth Text Retrieval
Conference (TREC-5), pages 291–314, NIST Special Publication 500-238, 1997.

147. T. Strzalkowski, J. Perez-Carballo, J. Karlgren, A. Hulth, P. Tapanainen, and
T. Lahtinen. Natural Language Information Retrieval: TREC-8 Report. In
Proceedings of the Eighth Text Retrieval Conference (TREC-8), pages 381–390,
NIST Special Publication 500-246, 1999.

148. H. Stuckenschmidt, A. de Waard, R. Bhogal, C. Fluit, A. Kampman, J. van
Buel, E. van Mulligen, J. Broekstra, I. Crowlesmith, F. van Harmelen, and
T. Scerri. A Topic-Based Browser for Large Online Resources. In E. Motta,
N. Shadbolt, A. Stutt, and N. Gibbins, editors, Proceedings of Engineering
Knowledge in the Age of the Semantic Web, 14 th International Conference,
EKAW 2004, Lecture Notes in Computer Science 3257, pages 433–448. Springer
Verlag, 2004.

149. Süddeutsche Zeitung Magazin, December 2000. Number 52.¨
150. K. Summers. Automatic Discovery of Logical Document Structure. PhD thesis,

Cornell University, 1998.
151. R. F. E. Sutcliffe and K. White. Searching via keywords or concept hierar-

chies - which is better? In Proceedings of the 3 rd International Conference
on Language Resources and Evaluation, pages 2103–2106, Las Palmas de Gran
Canaria, Spain, 2002.

152. K. Taghva, A. Condit, and J. Borsack. Autotag: A Tool for Creating Structured
Document Collections from Printed Material. Technical Report TR 94-11,
Information Science Research Institute, University of Nevada, 1994.

153. P. D. Turney. Extraction of Keyphrases from Text. Technical Report ERB-
1057, National Research Council of Canada, Institute for Information Technol-
ogy, 1999.

154. P. D. Turney. Learning Algorithms for Keyphrase Extraction. Information
Retrieval, 2(4):303–336, 2000.

155. C. J. van Rijsbergen. Information Retrieval. Butterworths, 1979.
156. E. Voorhees and D. Harman. Overview of TREC 2001. In Proceedings of

the Tenth Text Retrieval Conference (TREC-2001), pages 1–15, NIST Special
Publication 500-250, 2002.

157. N. Wacholder, D. K. Evans, and J. L. Klavans. Automatic identification and
organization of index terms for interactive browsing. In Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries, JCDL 2001, pages 126–
134. ACM, 2001.

158. W. Wahlster, editor. Verbmobil: Foundations of Speech-to-Speech Translation.
Springer Verlag, Berlin, 2000.

159. M. Walker, L. Hirschman, and J. Aberdeen. Evaluation for DARPA Com-
municator Spoken Dialogue Systems. In Proceedings of the 2 nd International
Conference on Language Resources and Evaluation, pages 735–741, Athens,
Greece, 2000.

160. M. Walker, C. Kamm, and D. Litman. Towards developing general models of
usability with PARADISE. Natural Language Engineering, 6(3):363–377, 2000.

161. N. Webb, A. De Roeck, U. Kruschwitz, P. Scott, S. Steel, and R. Turner.
Evaluating a Natural Language Dialogue System: Results and Experiences.
In Proceedings of the Workshop ”From Spoken Dialogue to Full Natural In-
teractive Dialogue - Theory, Empirical Analysis and Evaluation” (at the 2 nd

192 References

International Conference on Language Resources and Evaluation LREC2000),
pages 22–26, Athens, Greece, 2000.

162. X. Wei and A. Rudnicky. Task-based dialog management using an agenda.
In ANLP/NAACL 2000 Workshop on Conversational Systems, pages 42–47,
Seattle, 2000.

163. R. Weiss, B. Velez, M. A. Sheldon, C. Nemprempre, P. Szilagyi, A. Duda,
and D. K. Gifford. HyPursuit: A Hierarchical Network Search Engine that
Exploits Content-Link Hypertext Clustering. In Proceedings of the Seventh
ACM Conference on Hypertext, pages 180–193, Washington DC, 1996.

164. R. W. White, J. M. Jose, and I. Ruthven. Comparing Explicit and Implicit
Feedback Techniques for Web Retrieval: TREC-10 Interactive Track Report.
In Proceedings of the Tenth Text Retrieval Conference (TREC-2001), pages
534–538, NIST Special Publication 500-250, 2002.

165. R. W. White, I. Ruthven, and J. M. Jose. The Use of Implicit Evidence
for Relevance Feedback in Web Retrieval. In F. Crestani, M. Girolami, and
C. J. van Rijsbergen, editors, Proceedings of the 24 th European Colloquium on
Information Retrieval Research (ECIR’02), Lecture Notes in Computer Science
2291, pages 93–109. Springer Verlag, 2002.

166. D. Widdows, S. Cederberg, and B. Dorow. Visualisation Techniques for
Analysing Meaning. In Text, Speech, and Dialogue. Fifth International Con-
ference (TSD2002), pages 107–114, 2002.

167. D. Widdows and B. Dorow. A Graph Model for Unsupervised Lexical Ac-
quisition and Automatic Word-Sense Disambiguation. In Proceedings of the
19 th Conference on Computational Linguistics (COLING), pages 1093–1099,
Taipei, Taiwan, 2002.

168. R. Yangarber, R. Grishman, P. Tapanainen, and S. Huttunen. Automatic
Acquisition of Domain Knowledge for Information Extraction. In Proceedings
of the 18 th Conference on Computational Linguistics (COLING), pages 940–
946, Saarbrücken, 2000.¨

169. O. Zamir and O. Etzioni. Grouper: A Dynamic Clustering Interface to Web
Search Results. In Proceedings of the Eighth International World Wide Web
Conference (WWW8), pages 1361–1374, Toronto, 1999.

170. H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learning to Cluster Web
Search Results. In Proceedings of the 27 th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 210–
217, Sheffield, 2004.

171. C. Zhai. Fast Statistical Parsing of Noun Phrases for Document Indexing. In
Proceedings of the 5 th Conference on Applied Natural Language Processing,
pages 312–319, Washington DC, 1997.

172. R. Y. Zhang, L. V. S. Lakshmanan, and R. H. Zamar. Extracting Relational
Data from HTML Repositories. SIGKDD Explorations Newsletter, 6(2):5–13,
2004.

173. V. Zue. Toward Systems that Understand Spoken Language. IEEE Expert
Magazine, 9(1):51–59, February 1994.

174. V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips, J. Polifroni, and S. Seneff.
The VOYAGER Speech Understanding System: Preliminary Development and
Evaluation. In Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 73–76, 1990.

Index

AlltheWeb 29
AltaVista 29, 37, 38, 43, 107, 123, 145
ambiguity 4
America Online 37
ARCH 31
Artequakt 34
authority 33
Autotag 36

back-off 58, 100, 101
backend

YPA 159, 160, 164
bag of words 8
base form reduction 160
BBC News Web site 94, 112–117, 125
Blobworld 38
Boolean model 54, 55, 57
Brill tagger 60, 118, 171
browsing 27, 39, 40, 177
Building Finder 27
business classification

classified directory 64, 165

CAS 35
category

classified directory 64
Cha-Cha 33
choicerank function 86, 105, 170
CiteSeer 69
classification 29–31

classified directory 8, 63, 64, 157
Web pages 30

classification hierarchy 31
classified directory 5, 17, 63, 71

free entry 159
free text 159
search 157–171
semi display entry 159

classify function 64
Clever 33
cluster hypothesis 27
clustering 27–29

offline 73
on the fly 73, 99

collaborative filtering 173, 174
Communicator 41, 42
concept hierarchy 10, 39, 40, 125, 128

definition 54
navigation 38–41

concepts 9, 10, 14, 39, 47–51, 65, 111,
162

related 10, 12, 15, 48, 65, 162
type-2 100
type-3 100
type-n 47
vaguely related 50, 51, 57

conceptual term 9
cross-reference

classified directory 63, 64, 162
CS AKTive Space 35
currentquery function 84, 103, 166
customization

dialogue 89–90

data analysis 23, 45
data sparsity 58, 93, 125
database management systems 8

194 Index

depth

concept hierarchy 54

dialogue

information seeking 24, 41, 70

system initiated 81

dialogue function 84

UKSearch 104

YPA 168

dialogue history 81, 83, 103, 166

dialogue manager 78, 176

core (UKSearch) 78

default (UKSearch) 78, 79

YPA 158, 163

dialogue move 70

dialogue setup

UKSearch 103

YPA 166–168

dialogue state 78, 79, 81, 83, 167

Display 79, 80, 103, 166, 167

final 80

high level 78–80

Inconsistency 80, 166, 168

initial 83

low level 80–85

Meta 80, 103, 104, 166

Missing 80, 166, 168

Start 80, 103, 166, 167

Unknown Input 80, 166, 167

dialogue step 70, 78, 84

dialogue strategy 89

UKSearch 102–107, 117

YPA 162–171

dialogue system 3, 15, 24, 41–42, 44,
69–90

directed graph 10, 54

document 45

document description 76

document markup 31

document property 102, 165

modification 169

domain model 1, 3, 14, 44, 51–53

definition 54

incorporating additional knowledge
63–67

UKSearch (BBC News domain) 116

UKSearch (Essex domain) 109–111

weights 54, 58, 105, 174, 175

YPA 157, 160, 165, 169

domain model construction 12, 45,
54–58, 106

offline 128
on the fly 102, 107, 128, 162
UKSearch 100–102
YPA 161

domain model node 53
domain model relations 125, 152, 155

relevance 125, 127, 128
domain model structure 53–54
DOPE browser 177

Easify 30
equivalence relation 50
evaluation

domain model relations 125–128
log analysis 121–125
patterns in user behaviour 151–154
task-based (UKSearch: BBC News

domain) 141–156
task-based (UKSearch: Essex domain)

129–141
UKSearch 121–156
use of domain model relations 153
user feedback 140, 154–156

Excite 37, 123
explicit classification 64
explicit structure 63

classified directory 8
external domain knowledge 67
extracted knowledge

application 15
Extractor 28

facets 39
formal relation 30
formalized user query 77
free text

classified directory 6

Galaxy 42
goal description 70, 75, 77–78, 81, 102,

162, 166
Google 1, 33, 38, 122, 131, 138
Google API 103, 127, 129
Grouper 28
GroupLens 175

HappyAssistant 42

Index 195

heading
classified directory 64, 162

hierarchy see concept hierarchy
HITS 33, 38
HTML tags 10, 94, 95
<a> 100
 100
<big> 100
<h1> ... <h6> 100
<i> 100
<meta> 100
 100
<title> 100
<u> 100
anchor text 31–34, 114, 127
heading tag 114
heading text 33
link text 33
meta tag 34, 95, 111, 114
title text 29, 117

hub 33
HuddleSearch 38
human computer interaction 43, 177,

178
Hyperindex Browser 38
hyperlink 31, 33
Hyperlink Vector Voting 32
hypernym 57, 82
HyPursuit 32

implementational issues 60–61,
117–119

implicit classification 64
implicit structure 63
index 47
index tables

UKSearch (BBC News domain) 115
UKSearch (Essex domain) 108–109

InfoExtractor 26
Infomap Project 177
information extraction 26–27
Information Manifold 27
information retrieval 8, 24–25
informational Web query 43
intelligent search system 9
internal domain knowledge 63–67
intranet 99

Java 119

Kartoo 29
Keyphind 28
knowledge acquisition 23
knowledge extraction 8
knowledge representation 34
knowledge source

domain-independent 11
Kohonen self-organizing maps 28

language module
YPA 161

layout analysis 36
layout structure 36
lexical chaining 24
lexical modification 40
lexical processing 24
Likert scale 133, 135, 136, 144, 147, 149
linguistic relation 67
link relation 66
link structure 32, 33
LinkIT 40
log analysis 121–125
log files 37, 122, 126, 128, 130, 142
Lore 27

machine learning 23, 42
mapping a node to a query 55
markup 46
markup context 9, 45, 95, 100
markup structure 2, 6–8, 33, 34, 39, 44
markup tag 33, 34
matching function 54, 55, 76, 101
Medical Subject Headings 30
MeSH 30
meta search 28, 29
misspellings 123, 140, 152
model see domain model
mSQL 118
MySQL 119

narrow domain 9
Natural Language Assistant 42
natural language frontend

YPA 158
natural language processing 23
navigating concept hierarchies 38–41
navigational Web query 43
NLA 42
NLIR 24

196 Index

node
domain model 53

Northernlight 30
noun phrases 60, 101
Nutch 119

OIL 34
ontology 2, 34–35, 42, 77
Open Directory 15, 29, 31
Oracle 118, 171
OVIS 41
OWL 34

PageRank 38
PARADISE 137, 141
Paraphrase I 39
Paraphrase II 39
Paraphrase Search Assistant 39
part-of-speech tagging 24, 25, 60, 160
partially structured data 2, 23, 45, 159
path

concept hierarchy 54
Perl 118, 171
Philips train timetable system 41
phrase hierarchy 40
Porter stemmer 118
potential choice 81, 83

construction 85–89
on the fly 86
UKSearch 104–107
YPA 168–171

potential query refinement 59, 105
potential query relaxation 59, 105
precision 24, 121
Prisma tool 38, 107, 145
properties 75–78

document 76
system 76–77
UKSearch 102–103
YPA 165–166

query construction component
YPA 159, 164

query corresponding to a node 55
query expansion 11, 37, 39, 168
query length 123, 135, 144, 153, 154
query modification 31, 38, 86, 104, 117,

145, 146, 149, 151, 153–155, 157,
159, 162, 164

on the fly construction 141, 146, 152
using the domain model 58–59

query refinement 32, 39, 82, 85, 104,
105, 107, 117, 127, 140, 141, 146,
150–155, 165, 169

on the fly construction 117, 127
query relaxation 4, 39, 82, 85, 104, 105,

146, 150, 151, 153, 154, 169, 170
query replacement 107, 129, 146, 151
questionnaire 133

entry 133, 134
exit 133, 134, 138–139, 150–151, 155
post-search 133, 134, 136–137,

146–149
post-system 133, 134, 138, 149–150

ranking component
YPA 161, 170

real user queries 111–112
recall 24, 121
refinement step 85
relational database

YPA 161
relaxation step 85
relevance feedback

concept-based 28
relevance feedback

explicit 174
implicit 174

retrieve function 84, 103, 166

Scatter/Gather 27
SCISOR 26
search

data-driven 17
hierarchy-driven 15, 17
intranet 38
Web see Web search

search engine 32, 37, 38
search statistics

task-based evaluation 135–136,
144–147

see-also-reference
classified directory 162

see-reference
classified directory 162

semantic relation 12, 40
formal 30

Semantic Web 8, 9, 34

Index 197

semistructured data 2, 26, 27
sex 37
Sicstus Prolog 118, 171
significance 128, 134, 136, 137, 143,

144, 147, 149
slot-and-filler query 158, 162, 165, 168
snippets 28, 29, 100, 117
spam 38
standard search engine 98, 129, 140,

141
START system 11
state see dialogue state
stemming 24, 25, 160
stopword 102, 114, 127, 154
subdocument 45
subsumption 40
successive relaxation 164
Sundial 41
synonym 53, 57, 77, 82, 168, 170
system description 77
system property 102, 165, 168

modification 169

t-test 128, 134, 143, 144
TACC 31
tags see HTML tags
TaxGen 28
taxonomy 29, 31
taxonomy-based context conveyance

31
Teoma 29
topic map 30
toplevel

YPA 158
TouchGraph 177
TRAINS 41
transactional Web query 43
Travel Assistant 42
TREC 24, 25, 35
TREC interactive track 38, 43, 129,

133, 141, 143, 149, 177

Trevi intranet search engine 145
TRINDI 41
TrindiKit 41

UDC 30
UKSearch 18, 63, 80, 87, 93–156
underscore 47
Universal Decimal Classification 30
University of Essex Web site 4, 50, 73,

94, 107–112, 121, 125
unstructured data 3
usability 42–43
user input 83, 103, 166

vaguely-structured data 3
Verbmobil 41
Video Recommender 175
Viv́ simo 29´
Voyager 42

Web query 37
Web query classes 43
Web search 31–34, 37, 98
Web search engine 79
Web search studies 36–38
WHISK 26
WordNet 2, 9, 11, 25, 34, 35, 53, 57, 67,

77, 99, 161, 168, 170, 171
world model 10

YPA 159, 160, 165, 170
WorldInfo Assistant 42
wrapper 27, 42

XML 8, 26

yahoo 74
Yahoo! 15, 29, 63
Yellow Pages 5, 15, 16, 42, 63, 157, 159,

161, 162
Yellow Pages data file 5, 6, 159
YPA 18, 63, 73, 79, 157–171

